Quiz 1

1. By setting one variable constant, find a plane that intersects the graph of $z=4 x^{2}-8 y^{2}+25$ in a:
(a) Parabola opening upward: Set $y=0$, then $z=4 x^{2}+25$.
(b) Parabola opening downward: Set $x=0$, then $z=-8 y^{2}+25$.
(c) Pair of intersecting lines: Set $z=25$, then $x^{2}=2 y^{2}$, so that $x= \pm \sqrt{2} y$, which gives the two lines $y=\frac{1}{\sqrt{2}} x$ and $y=-\frac{1}{\sqrt{2}} x$.
2. Find the equation of the linear function $z=c+m x+n y$ whose graph interstect the $x z$-plane in the line $z=3 x+4$ and intersects the $y z$-plane in the line $z=y+4$.

When $y=0, z=3 x+4$, so $c=4$ and $m=3$, while when $x=0, z=y+4$, so $m=1$. All together, these give $z=4+3 x+y$.

