## Turn in the following problems:

1. Use the function $f(x)=4 x^{3} e^{x}$ to answer the following problems:
(a) On which interval(s) is the function $f(x)$ increasing?
(b) On which interval(s) is the function $f(x)$ concave upward?
2. (a) If $F(x)=f(x) g(x)$, where $f$ and $g$ have derivatives of all orders, show that

$$
F^{\prime \prime}=f^{\prime \prime} g+2 f^{\prime} g^{\prime}+f g^{\prime \prime}
$$

(b) Find similar formulas for $F^{\prime \prime \prime}$ and $F^{(4)}$.
(c) Guess a formula for $F^{(n)}$.
3. A table of values for the functions $f(x)$ and $f^{\prime}(x)$ and a graph of the piecewise linear function $g(x)$ are shown below.

| $x$ | $f(x)$ | $f^{\prime}(x)$ |
| :---: | :---: | :---: |
| -1 | 11 | -7 |
| 0 | 2 | -2 |
| 1 | -2 | 5 |
| 2 | 9 | 3 |
| 3 | 0 | 4 |
| 4 | 1 | 2 |


(a) Given $h(x)=f(x) g(x)$, find $h^{\prime}(1)$.
(b) Given $p(x)=\frac{f(x)}{g(x)}$, find $p^{\prime}(2)$.
(c) Given $q(x)=\frac{g(x)}{f(x)}$, find $q^{\prime}(2)$.
(d) Given $q(x)=\frac{f(x)}{g(x)}$, find $q^{\prime}(3)$.
(e) $l(x)=\frac{g(x)}{\sqrt{x}}$, find $l^{\prime}(4)$.
4. Prove that $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$.
5. Consider the following mathematical statements. Determine if the statements are always true, sometimes true, or never true.

- If the statement is always true, then give a brief explanation of why it is true.
- If the statement is sometimes true, then give two specific examples: one where the statement is true and one where the statement is not true. Be sure to indicate which example is which.
- If the statement is never true, then give a specific counterexample (an example where the statement is not true).

An example must include either a graph or a specific function.
(a) If $\frac{f(x)}{g(x)}$ is defined but not differentiable at $x=1$, then either $f(x)$ or $g(x)$ is not differentiable at $x=1$.
(b) If $f$ and $g$ are two functions whose second derivatives are defined, then

$$
(f \cdot g)^{\prime \prime}=f \cdot g^{\prime \prime}+f^{\prime \prime} \cdot g
$$

(c) $(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g^{\prime}(x)$.
(d) If $f(x)=\frac{(1-x)}{e^{-x}}$, then $f(x)$ cannot be differentiated using the product rule.
(e) If $h(x)=\frac{x^{2}}{e^{-x}}$, then $h^{\prime}(x)=\frac{2 x}{-e^{-x}}$.

In mathematics, we consider a statement to be false if we can find any examples where the statement is not true. We refer to these examples as counterexamples. Note that a counterexample is an example for which the "if" part of the statement is true, but the "then" part of the statement is false.
6. A manufacturer produces bolts of a fabric with a fixed width. The quantity $q$ of this fabric (measured in yards) that is sold is a function of the selling price $p$ (in dollars per yard), so we can write $q=f(p)$. Then the total revenue earned with selling price $p$ is $R(p)=p f(p)$.
(a) What does it mean to say that $f(20)=10,000$ and $f^{\prime}(20)=-350$ ?
(b) Assuming the values in part (a), find $R^{\prime}(20)$ and interpret your answer.

These problems will not be collected, but you might need the solutions during the semester:
7. If $f$ is a differentiable function, find an expression for the derivative fo the following function:

$$
y=\frac{1+x f(x)}{\sqrt{x}}
$$

8. A ladder 10 ft long rests against a vertical wall. Let $\theta$ be the angle between the top of the ladder and the wall and let $x$ be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does $x$ change with respect to $\theta$ when $\theta=\frac{\pi}{3}$ ?
9. Find the given derivative by finding the first few derivatives and observing the pattern that occurs.
(a) $\frac{d^{99}}{d x^{99}}(\sin (x))$
(b) $\frac{d^{35}}{d x^{35}}(x \sin (x))$

## Optional Challenge Problems

How many tangent lines to the curve $y=x /(x+1)$ pass through the point $(1,2)$ ? At which points do these tangent lines touch the curve?

