Turn in the following problems:

1. Sketch the area represented by $g(x)$. Then find $g^{\prime}(x)$ in two ways: (a) by using Part 1 of the Fundamental Theorem and (b) by evaluating the integral using Part 2 and then differentiating.

$$
g(x)=\int_{0}^{x}(1+\sqrt{t}) d t
$$

2. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function.

$$
y=\int_{\sin (x)}^{\cos (x)}\left(1+v^{2}\right)^{10} d v
$$

3. On what interval is the curve

$$
y=\int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} d t
$$

concave downward?
4. Let

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } 1<x \leq 2 \\ 0 & \text { if } x>2\end{cases}
$$

and

$$
g(x)=\int_{0}^{x} f(t) d t
$$

(a) Find an expression for $g(x)$ similar to the one for $f(x)$.
(b) Sketch the graphs of f and g.
(c) Where is f differentiable? Where is g differentiable?
5. If f is continuous and $\int_{0}^{9} f(x) d x=4$, find $\int_{0}^{3} x f\left(x^{2}\right) d x$.
6. Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width. Then find the area of the region.

$$
4 x+y^{2}=12, x=y
$$

These problems will not be collected, but you might need the solutions during the semester:
7. Evaluate the indefinite integral

$$
\int \frac{d x}{5-3 x}
$$

8. Find the area of the shaded region.

9. If f is continuous on \mathbb{R}, prove that

$$
\int_{a}^{b} f(x+c) d x=\int_{a+c}^{b+c} f(x) d x
$$

For the case where $f(x) \geq 0$, draw a diagram to interpret this equation geometrically as an equality of areas.
10. Evaluate exactly the following integrals
(a) $\int_{0}^{\sqrt[4]{3}} \frac{x}{1+x^{4}} d x$
(b) $\int_{0}^{\pi / 4} \sec ^{6}(x) \tan (x) d x$

