Quiz 3

1. Find the period and amplitude of $y = \sin(3t)$.

Т

4 1	T 2π
A = 1,	$I = \overline{3}$

2. Sketch the graph of $\sin(-x)$ between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

3. If $h(t) = \sqrt{1-t^2}$, find functions f and g such that h(t) = f(g(t)), and give the domains of each of f and g.

	$f(s) = \sqrt{s}$
<i>s</i> =	$g(t) = 1 - t^2$

The domain of f is normally $[0, \infty)$, so that means the range of g has to lie in $[0, \infty)$. This means $0 \le 1 - t^2 < \infty$, which, in practice, means $t^2 \le 1$, which is true if $-1 \le t \le 1$, in which case $0 \le 1 - t^2 \le 1$. Thus, the domain of g is [-1, 1] and its range is [0, 1]. In view of this, the domain of f is the range of g, i.e. [0, 1], which means the range of f is [0, 1]:

$$D(f) = [0,1], \qquad R(f) = [0,1], \qquad D(g) = [-1,1], \qquad R(g) = [0,1]$$