Quiz 3

1. Find the period and amplitude of $y=\sin (3 t)$.

$$
A=1, \quad T=\frac{2 \pi}{3}
$$

2. Sketch the graph of $\sin (-x)$ between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

3. If $h(t)=\sqrt{1-t^{2}}$, find functions f and g such that $h(t)=f(g(t))$, and give the domains of each of f and g.

$$
\begin{aligned}
& f(s)=\sqrt{s} \\
& s=g(t)=1-t^{2}
\end{aligned}
$$

The domain of f is normally $[0, \infty)$, so that means the range of g has to lie in $[0, \infty)$. This means $0 \leq 1-t^{2}<\infty$, which, in practice, means $t^{2} \leq 1$, which is true if $-1 \leq t \leq 1$, in which case $0 \leq 1-t^{2} \leq 1$. Thus, the domain of g is $[-1,1]$ and its range is $[0,1]$. In view of this, the domain of f is the range of g, i.e. $[0,1]$, which means the range of f is $[0,1]$:

$$
D(f)=[0,1], \quad R(f)=[0,1], \quad D(g)=[-1,1], \quad R(g)=[0,1]
$$

