Turn in the following problems:

1. The boundaries of the shaded region are the y-axis, the line $y=1$, and the curve $y=\sqrt[4]{x}$. Find the area of this region by writing x as a function of y and integrating with respect to y.

2. If $f(x)$ is the slope of a trail at a distance of x miles from the start of the trail, what does $\int_{3}^{5} f(x) d x$ represent?
3. If the units for x are feet and the units for $a(x)$ are pounds per foot, what are the units for $d a / d x$? What units does $\int_{2}^{8} a(x) d x$ have?
4. The linear density of a rod of length 4 m is given by $\rho(x)=9+2 \sqrt{x}$ measured in kilograms per meter, where x is measured in meters from one end of the rod. Find the total mass of the rod.
5. Water flows into and out of a storage tank. A graph of the rate of change $r(t)$ of the volume of water in the tank, in liters per day, is shown. If the amount of water in the tank at time $t=0$ is $25,000 \mathrm{~L}$, use the Midpoint Rule to estimate the amount of water four days later.

6. Suppose h is a function such that $h(2)=-4, h^{\prime}(2)=-7, h^{\prime \prime}(2)=6, h(5)=8, h^{\prime}(5)=10$, and $h^{\prime \prime}(5)=20$, and $h^{\prime \prime}$ is continuous everywhere. Evaluate $\int_{2}^{5} h^{\prime \prime}(u) d u$.
