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1 Points and Vectors

1.1 Definitions

We denote n-dimensional Euclidean space by

Rn =

n times︷ ︸︸ ︷
R× · · · × R

= {(x1, . . . , xn) | xi is a real number}
(1.1)

We will typically use capital letters P for the elements of Rn, the n-tuples (x1, . . . , xn), which
we call points,

P = (x1, . . . , xn) (1.2)

We may also think of the elements of Rn as vectors, however, for example when working
with things like velocities/forces/etc. (‘vector quantities’, typically residing in phase space
rather than configuration space, in physics lingo). There is a certain notation which is found
in both physics and math books, that emphasises the vector part of the elements of Rn, and
it is the arrow and angle bracket notations for the n-tuples:

~x or x = 〈x1, . . . , xn〉 (1.3)

Example 1.1 Our two main examples are the Euclidean plane R2 and Euclidean three-
dimensional space R3. We usually denote x1 by x, x2 by y, and x3 by z, so that P = (x, y)
or (x, y, z), as the case may be. �

We visualize points and vectors differently. For example, in R2 the point P = (−1, 3) is
pictured as a dot, and the vector ~x = 〈−1, 3〉 is pictured as an arrow from the origin to P :

P = (−1, 3)

~x = 〈−1, 3〉

x

y

1



1.2 Algebraic Properties of Vectors

The essential difference between points and vectors, mathematically, is that points don’t
possess any algebraic properties, whereas vectors do. The key algebraic properties of vectors
are addition, scalar multiplication, and the dot and cross products:

(1) We can add two vectors.

(2) We can scale any vector (multiply it by a real number).

(3) Rules (1) and (2) are subject to certain rules (associativity, commutativity and dis-
tributivity rules) which will make them “nice” to work with and give them geometric
content.1

(4) We can “multiply” two vectors, in different ways. The dot product of two vectors results
in a real number.

(5) The cross product results in another vector.

1.2.1 Vector Addition

We define addition of vectors in Rn componentwise,

~x+ ~y = 〈x1, x2, . . . , xn〉+ 〈y1, y2, . . . , yn〉
= 〈x1 + y1, x2 + y2, . . . , xn + yn〉

(1.4)

Example 1.2 Let us see what this means in R2. Take, say, ~x = 〈1, 2〉 and ~y = 〈−2, 1〉.
Then ~x+ ~y = 〈1− 2, 2 + 1〉 = 〈−1, 3〉.

~x

~y

~x+ ~y

x

y

Thus we see that to reach ~x+ ~y, we may first go to ~x, then go in the direction of ~y to get to
~x+ ~y, or else we may to to ~y first and then go in the direction of ~x. This shows geometrically
the algebraic rule called commutativity, ~x+ ~y = ~y + ~x. �

As a direct consequence of our definition of vector addition see that we have commutativity

1In the case of Euclidean Rn the rules for addition and scalar multiplication follow from directly from the
definitions of addition and scalar multiplication themselves, but in abstract linear algebra they form the basis
for the definition of (abstract) vector space.
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of addition:

~x+ ~y = 〈x1, . . . , xn〉+ 〈y1, . . . , yn〉 (1.5)

= 〈x1 + y1, . . . , xn + yn〉
= 〈y1 + x1, . . . , yn + xn〉
= ~y + ~x

Another obvious fact about our definition of addition in Rn is that it is associative. We can
add two vectors first, then a third, but we could just as well have added the second and third
first, then the first to the result:

(~x+ ~y) + ~z = ~x+ (~y + ~z) (1.6)

which again follows from the same associativity holding in each component, (xi + yi) + zi =
xi + (yi + zi).

It is also clear that the zero vector,

~0 = 〈0, . . . , 0〉 (1.7)

satisfies
~0 + ~x = ~x+~0 = ~x (1.8)

for all ~x in Rn. Moreover, the negative or a vector ~x in Rn, defined by

− ~x = 〈−x1, . . . ,−xn〉 (1.9)

satisfies
(−~x) + ~x = ~x+ (−~x) = ~0

which we may more compactly write −~x + ~x = ~x − ~x = ~0. That is, we may use negative
vectors to define subtraction of vectors in Rn, namely by addition of negatives:

~x− ~y = ~x+ (−~y) (1.10)

Geometrically, the negative −~x of a vector is the reflection of ~x through the origin:

~x = 〈−1, 3〉

−~x = 〈1,−3〉

x

y
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1.2.2 Scalar Multiplication

Let us now define scalar multiplication of vectors in Rn, meaning multiplication of a vector
~x by a real number a. As with addition, this is defined componentwise:

a~x = a〈x1, . . . , xn〉 = 〈ax1, . . . , axn〉 (1.11)

It is clear that

1~x = ~x (1.12)

0~x = ~0 (1.13)

Moreover, we have associativity of scalar multiplication,

a(b~x) = (ab)~x (1.14)

and distributivity of scalar multiplication over addition:

a(~x+ ~y) = a~x+ a~y (1.15)

(a+ b)~x = a~x+ b~x (1.16)

for all real numbers a and b and all elements ~x and ~y of Rn.

The geometric content of scalar multiplication may be seen in the following example:

Example 1.3 Take, say, the vector ~x = 〈1, 2〉 and the real number a = 2. Then, alge-
braically,

a~x = 2〈1, 2〉 = 〈2 · 1, 2 · 2〉 = 〈2, 4〉

which, geometrically means this:

~x = 〈1, 2〉

x

y 2~x = 〈2, 4〉

x

y

Thus geometrically scalar multiplication has the effect of scaling the length of the vector ~x. �
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1.2.3 Coordinate Vectors and Vector Decomposition

We can use addition and scalar multiplicaton of vectors to decompose a given vector ~x =
〈x1, . . . , xn〉 into its components xi:

~x = 〈x1, . . . , xn〉
= 〈x1, 0, . . . , 0〉+ 〈0, x2, 0, . . . , 0〉+ · · ·+ 〈0, . . . , 0, xn〉
= x1〈1, 0, . . . , 0〉+ x2〈0, 1, 0, . . . , 0〉+ · · ·+ xn〈0, . . . , 0〉

If we define the coordinate basis vectors

e1 = 〈1, 0, . . . , 0〉, e2 = 〈0, 1, 0 . . . , 0〉, . . . , en = 〈0, . . . , 0, 1〉 (1.17)

then we can nicely rewrite equation (1.17) as

~x = 〈x1, . . . , xn〉 = x1e1 + x2e2 + · · ·+ xnen (1.18)

Example 1.4 When n = 2, we have special notation, which is more commonly found in
physics texts:

~i = i = e1 = 〈1, 0〉
~j = j = e2 = 〈0, 1〉

(1.19)

When n = 3, we also write:

~i = i = e1 = 〈1, 0, 0〉
~j = j = e2 = 〈0, 1, 0〉
~k = k = e3 = 〈0, 0, 1〉

(1.20)

For example,
〈1, 3,−2〉 = 1~i+ 3~j − 2~k (1.21)

is decomposed into its components. As another example,

〈4, 3〉 = 4~i+ 3~j (1.22)

and this can be pictured as follows:

4~i

3~j

〈4, 3〉

x

y

�
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1.2.4 The Relationship Between Points and Vectors: the Displacement Vector

Given two points P = (x1, . . . , xn) and Q = (y1, . . . , yn) in Rn, the displacement vector
from P to Q is defined as

−−→
PQ =

−−→
OQ−

−−→
OP

= 〈y1, . . . , yn〉 − 〈x1, . . . , xn〉
= 〈y1 − x1, . . . , yn − xn〉

(1.23)

We picture the displacement vector
−−→
PQ as emanating from the point P and ending in an

arrow at the point Q (even though it always, strictly speaking, emanates from the origin to
its endpoint).

Example 1.5 Let us look at the case of R2. Suppose P = (1, 2) and Q = (5, 3). Then,

−−→
PQ =

−−→
OQ−

−−→
OP = 〈5, 3〉 − 〈1, 2〉 = 〈5− 1, 3− 2〉 = 〈4, 1〉 (1.24)

and the picture is this:

O

−−→
PQ = 〈4, 1〉

P = (1, 2)

Q = (5, 3)

x

y

Remark 1.6 In fact,
−−→
PQ should be pictured as emanating from the origin, but we want to

think of
−−→
PQ as emanating from P . We should, then, if we were being rigorous, think of

−−→
PQ

as lying in a copy of Rn sitting above our position space Rn at the point P , that is we should

think of
−−→
PQ as lying in the set {P} × Rn = {(P, ~x) | ~x = 〈x1, . . . , xn〉}, and thus

−−→
PQ = (P,

−−→
OQ−

−−→
OP )

For example, if P = (1, 2) and Q = (5, 3), then

−−→
PQ =

(
(1, 2), 〈4, 1〉

)
We will not nit-pick here, and we will simply conflate points and vectors in the strict sense,
but we will picture vectors as emanating from points in the underlying position space. �

Now suppose we are considering not two points P and Q, but two vectors ~v and ~w. Then we
can consider the displacement vector from ~v to ~w. This is, in fact ~w − ~v, which is simply
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due to the fact that ~w = ~v + (~w − ~v):

~w − ~v

~v

~w

x

y

This of course harmonizes with our previous definition,
−−→
PQ =

−−→
OQ −

−−→
OP . We subtract our

starting position vector from our ending position vector in both cases.

1.2.5 The Dot Product

The dot product of two vectors ~x = 〈x1, x2, . . . , xn〉 and ~y = 〈y1, y2, . . . , yn〉 in Rn is defined
by

~x · ~y = 〈x1, x2, . . . , xn〉 · 〈y1, y2, . . . , yn〉 = x1y1 + x2y2 + · · ·+ xnyn (1.25)

or, more concisely, using summation notation,

~x · ~y =

n∑
i=1

xiyi (1.26)

Example 1.7 Consider the vectors ~x = 〈1, 2,−5〉 and ~y = 〈−3, 2, 4〉 in R3. Their dot
product is

~x · ~y = 〈1, 2,−5〉 · 〈−3, 2, 4〉
= 1 · (−3) + 2 · 2 + (−5) · 4
= −19

�

The length (or magnitude or norm) of a vector ~x in Rn will be defined as the square root
of the dot product of ~x with itself:

|~x| =
√
~x · ~x (1.27)

Thus,

|~x| =

√√√√ n∑
i=1

x2i

and therefore

|~x|2 =

n∑
i=1

x2i
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This relates to the formula for the distance between two points P = (x1, . . . , xn) and
Q = (y1, . . . , yn):

d(P,Q) = d
(

(x1, . . . , xn), (y1, . . . , yn)
)

=

√√√√ n∑
i=1

(yi − xi)2 (1.28)

In the cases n = 2 and n = 3, this is the Pythagorean theorem. For n > 3 it’s simply a
definition which in a way takes the Pythagorean theorem as an axiom.

What is the relationship between the distance formula and the length of a vector? It is that

the length of the displacement vector
−−→
PQ is precisely the distance between P and Q:

|
−−→
PQ| =

√
−−→
PQ ·−−→PQ

=

√
( ~Q− ~P ) · ( ~Q− ~P )

=
√
〈y1 − x1, . . . , yn − xn〉 · 〈y1 − x1, . . . , yn − xn〉

=

√√√√ n∑
i=1

(yi − xi)2

= d(P,Q)

The proofs of the following propertis of the dot product are analogous to the above calculation

showing that |
−−→
PQ| = d(P,Q), and we leave them as an easy exercise.

Example 1.8 Let P = (1, 2) and Q = (5, 3) be points in the plane R2. Find the magnitude
of the displacement vector from P to Q.

Solution: Let ~x =
−−→
PQ =

−−→
OQ−

−−→
OP = 〈4, 1〉, then

|~x| = |〈4, 1〉| =
√

42 + 12 =
√

17 �

Proposition 1.9 (Algebraic Properties of the Dot Product) Let ~x, ~y, ~z be vectors
in Rn and let c be a real number. Then,

(1) ~x · ~x = |~x|2

(2) |c~x| = |c||~x|
(3) ~x · ~y = ~y · ~x (commutativity)

(4) ~x · (~y + ~z) = ~x · ~y + ~x · ~z (distributivity over addition)

(5) (c~x) · ~y = c(~x · ~y) = ~x · (c~y) (associativity and commutativity of scalar multiplication
and dot multiplication)

(6) ~0 · ~x = 0
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In two and three dimensions, the dot product has a very geometric interpretation:

Proposition 1.10 Let ~x = 〈x1, y1, z1〉 and let ~y = 〈x2, y2, z2〉 be two vectors in R3, and let
θ be the angle between them. Then,

~x · ~y = |~x||~y| cos θ (1.29)

Proof: Consider the triangle formed by the vectors ~x, ~y and ~y − ~x.

~y − ~x

~x

~yθ

x

y

By the Law of Cosines
|~y − ~x|2 = |~x|2 + |~y|2 − 2|~x||~y| cos θ

Using the fact that |~x|2 = ~x · ~x, we can rewrite the above as

(~y − ~x) · (~y − ~x) = ~x · ~x+ ~y · ~y − 2|~x||~y| cos θ

Distributing on the left and simplifying, we get

���~y · ~y − 2~x · ~y +���~x · ~x =���~x · ~x+���~y · ~y − 2|~x||~y| cos θ

That is,

��−2~x · ~y =��−2|~x||~y| cos θ �

1.2.6 Cross Product

Note that this section requires knowledge of determinants, which is to be found below, in the
section on matrices.

The cross product is a vector product, meaning that multiplying two vectors this way results
in another vector (this is why the dot product is sometimes called the scalar product, to
distinguish it from this vector product). The cross product is only defined in 3 dimensions,
i.e. only on R3.2

2It generalizes to other dimensions only once we switch to the wedge product (or exterior product)
in multilinear algebra. Moving past the algebra we are led to a differential type of wedge product in the
apparatus of differential forms. For further reading on this, see Knapp [2] and Gallier [1] for the algebra,
and Munkres [3] for the calculus side.
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Let ~u = 〈a, b, c〉 and ~v = 〈d, e, f〉 be two vectors in R3. We define their cross product to be
the vector gotten by computing the following determinant:

~u× ~v = 〈a, b, c〉 × 〈d, e, f〉 =

∣∣∣∣∣∣
~i ~j ~k
a b c
d e f

∣∣∣∣∣∣
= ~i

∣∣∣∣b c
e f

∣∣∣∣−~j ∣∣∣∣a c
d f

∣∣∣∣+ ~k

∣∣∣∣a b
d e

∣∣∣∣
(1.30)

Carrying out this computation to its awful end, we get

~u× ~v = (bf − ce)~i− (af − cd)~j + (ae− bd)~k = 〈bf − ce, cd− af, ae− bd〉

But it is easier to remember the equation (1.30) in terms of determinants and just perform
the rest of the computation by hand in particular cases.

Example 1.11 Let ~u = 〈1, 2,−2〉 and ~v = 〈−8, 5, 4〉. Then,

~u× ~v = 〈1, 2,−2〉 × 〈−8, 5, 4〉

=

∣∣∣∣∣∣
~i ~j ~k
1 2 −2
−8 5 4

∣∣∣∣∣∣
= ~i

∣∣∣∣2 −2
5 4

∣∣∣∣− ~k ∣∣∣∣ 1 −2
−8 4

∣∣∣∣+~j

∣∣∣∣ 1 2
−8 5

∣∣∣∣
= (8 + 10)~i− (4− 16)~j + (5 + 16)~k

= 18~i+ 12~j + 21~k or 〈18, 12, 21〉

Example 1.12 Let us compute ~i×~j:

~i×~j =

∣∣∣∣∣∣
~i ~j ~k
1 0 0
0 1 0

∣∣∣∣∣∣ =~i

∣∣∣∣0 0
1 0

∣∣∣∣−~j ∣∣∣∣1 0
0 0

∣∣∣∣+

∣∣∣∣1 0
0 1

∣∣∣∣ = 0~i− 0~j + 1~k = ~k

By similar calculations, which we leave to you, we also have the relations ~j × ~k = ~i and
~k ×~i = ~j:

~i×~j = ~k

~k ×~i = ~j

~j × ~k = ~i

(1.31)

Note that the vectors ~i, ~j, ~k are cyclically permuted:

~i

~j ~k

in slots of the equation × =

(1.32)

�
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Proposition 1.13 (Algebraic Properties of the Cross Product) Let ~x, ~y, ~z be vec-
tors in R3 and let c be a real number. Then,

(1) ~x× ~y = −~y × ~x (anti-commutativity)

(2)
~x× (~y + ~z) = ~x× ~y + ~x× ~z
(~x+ ~y)× ~z = ~x× ~z + ~y × ~z

(distributivity over addition)

(3) (c~x) × ~y = c(~x × ~y) = ~x × (c~y) (associativity of scalar multiplication and cross
multiplication)

Proof: Let us prove (1), and leave the rest as easy exercises. Let ~x = 〈a, b, c〉 and ~y = 〈d, e, f〉.
Then,

~y × ~x =

∣∣∣∣∣∣
~i ~j ~k
d e f
a b c

∣∣∣∣∣∣ =~i

∣∣∣∣e f
b c

∣∣∣∣−~j ∣∣∣∣d f
a c

∣∣∣∣+

∣∣∣∣d e
a b

∣∣∣∣ = (ce− bf)~i− (cd− af)~j + (bd− ae)~k

However, according to the calculation (1.30) above,

~x× ~y = (bf − ce)~i− (af − cd)~j + (ae− bd)~k = −~y × ~x �

Proposition 1.14 For any vectors ~u, ~v in R3 we have the identity

|~u× ~v| = |~u||~v| sin θ (1.33)

and consequently

~u× ~v =
(
|~u||~v| sin θ

)
~n (1.34)

where θ is the angle between the vectors and ~n = ~u×~v
|~u×~v| is the unit vector in the direction of

~u× ~v, determined by the right-hand rule, illustrated in the following diagram,3

Proof: Let ~u = 〈a, b, c〉 and ~v = 〈d, e, f〉. By the calculation (1.30) we have that ~u × ~v =

3Which I got from the Wikipedia page on the cross product, http://en.wikipedia.org/wiki/Cross_

product.
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〈bf − ce, cd− af, ae− bd〉, and consequently

|~u|2|~v|2 sin2 θ = |~u|2|~v|2(1− cos2 θ)

= |~u|2|~v|2 − |~u|2|~v|2 cos2 θ

= |~u|2|~v|2 − (~u · ~v)2

= (a2 + b2 + c2)(d2 + e2 + f2)− (ad+ be+ cf)2

= (a2d2 + b2e2 + c2f2 + b2f2 + c2e2 + c2d2 + a2f2 + a2e2 + b2d2)

−(a2d2 + b2e2 + c2f2 + 2bcef + 2acdf + 2abde)

=
(
b2f2 − 2bcef + c2e2

)
+
(
c2d2 − 2acdf + a2f2

)
+
(
a2e2 − 2abde+ b2d2

)
+(a2d2 + b2e2 + c2f2)− (a2d2 + b2e2 + c2f2)

= (bf − ce)2 + (cd− af)2 + (ae− bd)2

= 〈bf − ce, cd− af, ae− bd〉 · 〈bf − ce, cd− af, ae− bd〉
= |~u× ~v|2

Taking the square root gives the result. �
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1.2.7 Interaction Between the Dot and Cross Products

Proposition 1.15 Let ~a = 〈a1, a2, a3〉, ~b = 〈b1, b2, b3〉, ~c = 〈c1, c2, c3〉 be vectors in R3.
Then,

(1)
~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

(~a×~b)× ~c = (~a · ~c)~b− (~c ·~b)~a
(vector triple product)

(2) (~a×~b) ·~c = (~c×~a) ·~b = (~b×~c) ·~a =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = ~a · (~b×~c) = ~c · (~a×~b) = ~b · (~c×~a)

(scalar triple product)

(3) (~a×~b)× ~c+ (~c× ~a)×~b+ (~b× ~c)× ~a = ~0 (Jacobi identity)

Proof: (1) This is a direct computation:

~a× (~b× ~c) =

∣∣∣∣∣∣∣∣
~i ~j ~k
a1 a2 a3∣∣∣∣b2 b3

c2 c3

∣∣∣∣ − ∣∣∣∣b1 b3
c1 c3

∣∣∣∣ ∣∣∣∣b1 b2
c1 c2

∣∣∣∣
∣∣∣∣∣∣∣∣

=

〈
a2

∣∣∣∣b1 b2
c1 c2

∣∣∣∣+ a3

∣∣∣∣b1 b3
c1 c3

∣∣∣∣ ,
a3

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a1 ∣∣∣∣b1 b2
c1 c2

∣∣∣∣ ,
−a1

∣∣∣∣b1 b3
c1 c3

∣∣∣∣− a2 ∣∣∣∣b2 b3
c2 c3

∣∣∣∣ 〉
=

〈
a2(b1c2 − b2c1) + a3(b1c3 − b3c1),

a3(b2c3 − b3c2)− a1(b1c2 − b2c1),

−a1(b1c3 − b3c1)− a2(b2c3 − b3c2)
〉

=
〈
a2b1c2 − a2b2c1 + a3b1c3 − a3b3c1,

a3b2c3 − a3b3c2 − a1b1c2 + a1b2c1,

−a1b1c3 + a1b3c1 − a2b2c3 + a2b3c2
〉

+〈a1b1c1, a2b2c2, a3b3c3〉 − 〈a1b1c1, a2b2c2, a3b3c3〉
=

〈
(a2c2 + a3c3)b1 − (a2b2 + a3b3)c1,

(a1c1 + a3c3)b2 − (a1b1 + a3b3)c2,

(a1c1 + a2c2)b3 − (a1b1 + a2b2)c3
〉

+〈a1b1c1, a2b2c2, a3b3c3〉 − 〈a1b1c1, a2b2c2, a3b3c3〉

=
〈

(a1c1 + a2c2 + a3c3)b1 − (a1b1 + a2b2 + a3b3)c1,

(a1c1 + a2c2 + a3c3)b2 − (a1b1 + a2b2 + a3b3)c2,

(a1c1 + a2c2 + a3c3)b3 − (a1b1 + a2b2 + a3b3)c3

〉
=

〈
(~a · ~c)b1 − (~a ·~b)c1, (~a · ~c)b2 − (~a ·~b)c2, (~a · ~c)b3 − (~a ·~b)c3

〉
= (~a · ~c)~b− (~a ·~b)~c
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The other expression in (1) follows from this one and the anti-commutativity of the cross

product: −(~a×~b)×~c = ~c× (~a×~b) = (~c ·~b)~a− (~c ·~a)~b so that (~a×~b)×~c = (~a ·~c)~b− (~c ·~b)~a.

For (2), we simply compute, using some basic facts about determinants:

(~a×~b) · ~c =

〈∣∣∣∣a2 a3
b2 b3

∣∣∣∣ ,− ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ , ∣∣∣∣a1 a2
b1 b2

∣∣∣∣〉 · 〈c1, c2, c3〉

=

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ c1 − ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ c2 +

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ c3
=

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (~c× ~a) ·~b = ~b · (~c× ~a)

=

∣∣∣∣∣∣
b1 b2 b3
c1 c2 c3
a1 a2 a3

∣∣∣∣∣∣ = (~b× ~c) · ~a = ~a · (~b× ~c)

= ~c · (~a×~b)

since each of the other two determinants is obtained from the first by 2 row interchanges,
which are equal to (−1)2 times the first.

The Jacobi identity (3) follows from the vector triple product: (~a×~b)×~c+(~c×~a)×~b+(~b×~c)×~a =

(~a · ~c)~b− (~a ·~b)~c+ (~c ·~b)~a− (~c · ~a)~b+ (~b · ~a)~c− (~b · ~c)~a = ~0. �
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1.3 Geometric Properties of the Dot and Cross Products

The formulas

~u · ~v = |~u||~v| cos θ (1.35)

|~u× ~v| = |~u||~v| sin θ (1.36)

for all vectors ~u and ~v in R3 forming an acute angle θ, already contain significant geometric
information. The purely algebraic definition of ~u · ~v = u1v1 + u2v2 + u3v3, which a priori
doesn’t say anything about angles and orthogonality, turns out to in fact give precisely that
information. Indeed, we can use purely algebraic information about ~u and ~v, namely their
magnitudes and dot product, to gain the important geometric information about the acute
angle they form:

θ = cos−1
(
~u · ~v
|~u||~v|

)
(1.37)

(provided, of course, that neither vector is the zero vector ~0 = 〈0, 0, 0〉, else we’d be dividing
by 0).

~u

~vθ

x

y

This fact motivates the following definition. We say two vectors ~u and ~v are orthogonal or
perpendicular if ~u · ~v = 0, and we denote this by

~u ⊥ ~v (1.38)

From equation (1.35) we immediately get that

~u ⊥ ~v ⇐⇒ cos θ = 0 ⇐⇒ θ =
π

2
(1.39)

Next, consider the projection of the vector ~u onto the vector ~v, that is, drop a perpendicular
from the arrowhead of ~u onto the line containing ~v,

proj~v ~u

~u

~vθ

x

y
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Observe that the length of the projection is clearly

comp~v ~u = |proj~v ~u| = |~u| cos θ = |~u| |~v|
|~v|

cos θ =
~u · ~v
|~v|

(1.40)

Therefore, if we give it a direction, namely the unit direction ~v
|~v| of ~v, we get

proj~v ~u = (|~u| cos θ)
~v

|~v|
=
~u · ~v
|~v|2

~v (1.41)

Next, consider the parallelogram formed by the vectors ~u and ~v:

h

~u

~vθ

x

y

We know that its area is the length of its base times its height,

A = bh

Now, b = |~v| and h = |~u| sin θ, so by equation

A = bh = |~v||~u| sin θ = |~u× ~v| (1.42)

i.e. the area of the parallelogram determined by ~u and ~v is the length of their cross product!

Now consider a parallelepiped spanned by three vectors ~u, ~v, ~w, the 3-dimensional analog
of the parallelogram, a rectangular solid whose opposite sides are all parallel.

~u× ~v

h

~w

~u

~v

θ
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The volume is the area of the parallelogram spanned by ~u and ~v times the height h,

V = Ah = |~u× ~v|h

But note that h is the length of the projection of ~w onto ~u× ~v,

h = | comp~u×~v ~w| =
|~w · (~u× ~v)|
|~u× ~v|

=

∣∣∣∣~w ·
(
~u× ~v
|~u× ~v|

)∣∣∣∣ = |~w|| cos θ|

Hence,

V = Ah = |~u× ~v| |~w · (~u× ~v)|
|~u× ~v|

= |(~u× ~v) · ~w| (1.43)

I.e., the volume V is equal to the absolute value of the scalar triple product of ~u, ~v and ~w,
which, by our formulas for the scalar triple product from Proposition 1.15, can be computed
using the determinant: if ~u = 〈u1, u2, u3〉, ~v = 〈v1, v2, v3〉 and ~w = 〈w1, w2, w3〉, then

V = |(~u× ~v) · ~w| = absolute value of

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ (1.44)

17



References

[1] Gallier, J. Notes on Differential Geometry, online notes at http://www.cis.upenn.edu/

~jean/gbooks/manif.html, Version of August 2013.

[2] Knapp, A.W., Basic Algebra, Birkh auser, 2000.

[3] Munkres, J.R., Analysis On Manifolds, Westview Press, 1997.

18

http://www.cis.upenn.edu/~jean/gbooks/manif.html
http://www.cis.upenn.edu/~jean/gbooks/manif.html

	Points and Vectors
	Definitions
	Algebraic Properties of Vectors
	Vector Addition
	Scalar Multiplication
	Coordinate Vectors and Vector Decomposition
	The Relationship Between Points and Vectors: the Displacement Vector
	The Dot Product
	Cross Product
	Interaction Between the Dot and Cross Products

	Geometric Properties of the Dot and Cross Products


