
Project 4: Polynomial
Approximations of Continuous

Functions

Write up proofs for the following theorems:

(1) (see Exercise 6.6.3 and Theorem 6.6.3) Taylor’s Theorem: Let f ∈ Cn+1[a, b],
and let x0 ∈ (a, b). Then, for all x ∈ (a, b) with x 6= x0 there is some x∗ between
x0 and x such that

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n +Rn(x∗)

=
n∑
k=0

f (k)(x0)

k!
(x− x0)k +Rn(x∗)

where

Rn(x∗) =
f (n+1)(x∗)

(n+ 1)!
(x− x0)n+1 (Lagrange remainder)

=

∫ x0

x

f (n+1)(t)

n!
(x− t)ndt, if x < x0

=

∫ x

x0

f (n+1)(t)

n!
(x− t)ndt, if x0 < x


(Cauchy remainder)

Some Remarks:

• Taylor’s Theorem concerns polynomial approximations of Cn functions on
closed bounded intervals [a, b] in a neighborhood of a point.

• Let p(x) =
∑n

k=0
f (k)(x0)

k! (x − x0)
k be the nth Taylor polynomial ap-

proximating f on [a, b]. The Lagrange form of the remainder R(x∗) can be
used to find a bound on error size of the approximation,

E(x) = |f(x)− p(x)| ≤ max
a≤x∗≤b

|R(x∗)| = MN

(n+ 1)!

where M = maxa≤x≤b |fn+1(x)| and N = max{x− a, b− x}.
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(2) (see Theorem 6.7.1) Weierstrass Approximation Theorem: For every con-
tinuous function f ∈ C]a, b] and for any ε > 0 there exists a polynomial p ∈ R[x]
approximating f uniformly on [a, b] within ε,

|f(x)− p(x)| < ε, ∀x ∈ [a, b]

(3) Lagrange Interpolating Polynomials

(a) Discussion and Definitions: Given distinct constants c0, c1, . . . , cn ∈ R,
we can define n+1 distinct polynomials that each have all except one of the
c0, . . . , cn as roots, and such that they are linearly independent as vectors
in Rn[x] (the vector space of polynomials of degree ≤ n+ 1). This gives us
a special basis for Rn+1[x], one which allows the construction of an n+ 1-
degree polynomial passing through the points (c0, b0), . . . , (cn, bn) ∈ R2.
The polynomials `0(x), . . . , `n(x) ∈ Rn[x] associated with the c0, . . . , cn
are given by

`i(x) =
n∏
k=0
k 6=i

x− ck
ci − ck

As a consequence of this definition we have that

`i(cj) =

{
0, if i 6= j

1, if i = j

This property of the polynomials means that β = {`0, `1, . . . , `n} is a basis
for Rn[x] (the real vector space of polynomials of degree ≤ n)–see proof
below. As a result, if we specify a set of n+1 constants in b0, b1, . . . , bn ∈ R,
the polynomial

L(x) =

n∑
i=0

bi`i(x)

is the unique polynomial in Rn[x] such that L(cj) = bj for all j = 0, 1, . . . , n,
called the nth Lagrange polynomial interpolating the ci. The process
outlined above of finding the polynomial L(x) satisfyingt L(cj) = bj for all
j = 0, 1, . . . , n is called Lagrange interpolation.

Now for the proof that β = {`0, `1, . . . , `n} is a basis for Rn[x]:

Proof: First, we prove that β = {`0, `1, . . . , `n} is linearly independent
in Rn[x]. That is, letting p0(x) ≡ 0 denote the zero polynomial, we prove
that

∀a0, . . . , an ∈ R, (a0`0 + · · ·+ an`n = p0 =⇒ a0 = · · · = an = 0)

Well, the premise, when spelled out more fully like this:

n∑
j=0

aj`j(x) = p0(x) = 0
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s holds true for all x ∈ R. This gives us the idea of plugging in cj for x:

aj = aj`j(cj)

= a0`(cj) + a1`1(cj) + · · ·+ an`n(cj)

= p0(cj)

= 0

This is true for each j = 0, 1, . . . , n. We conclude that a0 = · · · = an = 0
and therefore β is linearly independent.

We would normally next show that β = {`0, `1, . . . , `n} is panning. But
since dim

(
Rn[x]

)
= n+ 1 and |β| = n+ 1, it follows from linear algebra β

is a basis for Rn[x]. Consequently, every n-th (or lower) degree polynomial
in Rn[x] is a unique linear combination of polynomials in β, so that if
L ∈ Rn[x], then ∃b0, . . . , bn ∈ R such that

L = b0`1 + · · ·+ bn`n

(b) Theorem (Lagrange Interpolation): Suppose we have f ∈ Cn+1[a, b]
and use the y-values of f at distinct points x0, x1, . . . , xn ∈ [a, b] instead
of the constants bi in the construction of the Lagrange interpolating poly-
nomial L. By the above discussion

L(x) = f(x0)`0(x) + f(x1)`1(x) + · · ·+ f(xn)`n(x)

is the unique polynomial in Rn[x] passing through the points (xi, f(xi)),
and thus interpolating f . We claim that

f(x) = L(x) +
f (n+1)(ξ(x))

(n+ 1)!

n∏
i=0

(x− xi)

Consequently, a bound for the error |f(x)− L(x)| may be found by maxi-

mizing f (n+1)(ξ(x))
(n+1)!

∏n
i=0(x− xi) on [a, b].

Look at Theorem 3.3 in Burden and Faires, Numerical Analysis, 9th Edi-
tion for a nice proof.
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