Project 4: Polynomial Approximations of Continuous Functions

Write up proofs for the following theorems:
(1) (see Exercise 6.6.3 and Theorem 6.6.3) Taylor's Theorem: Let $f \in C^{n+1}[a, b]$, and let $x_{0} \in(a, b)$. Then, for all $x \in(a, b)$ with $x \neq x_{0}$ there is some x^{*} between x_{0} and x such that

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+R_{n}\left(x^{*}\right) \\
& =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+R_{n}\left(x^{*}\right)
\end{aligned}
$$

where

$$
\left.\begin{array}{rlr}
R_{n}\left(x^{*}\right) & =\frac{f^{(n+1)}\left(x^{*}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1} & \quad \text { (Lagrange remainder) } \\
& =\int_{x}^{x_{0}} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t, \quad \text { if } x<x_{0} \\
& =\int_{x_{0}}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t, \quad \text { if } x_{0}<x
\end{array}\right\} \quad \text { (Cauchy remainder) }
$$

Some Remarks:

- Taylor's Theorem concerns polynomial approximations of C^{n} functions on closed bounded intervals $[a, b]$ in a neighborhood of a point.
- Let $p(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ be the nth Taylor polynomial approximating f on $[a, b]$. The Lagrange form of the remainder $R\left(x^{*}\right)$ can be used to find a bound on error size of the approximation,

$$
E(x)=|f(x)-p(x)| \leq \max _{a \leq x^{*} \leq b}\left|R\left(x^{*}\right)\right|=\frac{M N}{(n+1)!}
$$

where $M=\max _{a \leq x \leq b}\left|f^{n+1}(x)\right|$ and $N=\max \{x-a, b-x\}$.
(2) (see Theorem 6.7.1) Weierstrass Approximation Theorem: For every continuous function $f \in C] a, b]$ and for any $\varepsilon>0$ there exists a polynomial $p \in \mathbb{R}[x]$ approximating f uniformly on $[a, b]$ within ε,

$$
|f(x)-p(x)|<\varepsilon, \quad \forall x \in[a, b]
$$

(3) Lagrange Interpolating Polynomials

(a) Discussion and Definitions: Given distinct constants $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$, we can define $n+1$ distinct polynomials that each have all except one of the c_{0}, \ldots, c_{n} as roots, and such that they are linearly independent as vectors in $\mathbb{R}_{n}[x]$ (the vector space of polynomials of degree $\leq n+1$). This gives us a special basis for $\mathbb{R}_{n+1}[x]$, one which allows the construction of an $n+1$ degree polynomial passing through the points $\left(c_{0}, b_{0}\right), \ldots,\left(c_{n}, b_{n}\right) \in \mathbb{R}^{2}$. The polynomials $\ell_{0}(x), \ldots, \ell_{n}(x) \in \mathbb{R}_{n}[x]$ associated with the c_{0}, \ldots, c_{n} are given by

$$
\ell_{i}(x)=\prod_{\substack{k=0 \\ k \neq i}}^{n} \frac{x-c_{k}}{c_{i}-c_{k}}
$$

As a consequence of this definition we have that

$$
\ell_{i}\left(c_{j}\right)= \begin{cases}0, & \text { if } i \neq j \\ 1, & \text { if } \quad i=j\end{cases}
$$

This property of the polynomials means that $\beta=\left\{\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right\}$ is a basis for $\mathbb{R}_{n}[x]$ (the real vector space of polynomials of degree $\leq n$)-see proof below. As a result, if we specify a set of $n+1$ constants in $b_{0}, b_{1}, \ldots, b_{n} \in \mathbb{R}$, the polynomial

$$
L(x)=\sum_{i=0}^{n} b_{i} \ell_{i}(x)
$$

is the unique polynomial in $\mathbb{R}_{n}[x]$ such that $L\left(c_{j}\right)=b_{j}$ for all $j=0,1, \ldots, n$, called the nth Lagrange polynomial interpolating the c_{i}. The process outlined above of finding the polynomial $L(x)$ satisfyingt $L\left(c_{j}\right)=b_{j}$ for all $j=0,1, \ldots, n$ is called Lagrange interpolation.
Now for the proof that $\beta=\left\{\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right\}$ is a basis for $\mathbb{R}_{n}[x]$:
Proof: First, we prove that $\beta=\left\{\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right\}$ is linearly independent in $\mathbb{R}_{n}[x]$. That is, letting $p_{0}(x) \equiv 0$ denote the zero polynomial, we prove that

$$
\forall a_{0}, \ldots, a_{n} \in \mathbb{R},\left(a_{0} \ell_{0}+\cdots+a_{n} \ell_{n}=p_{0} \quad \Longrightarrow \quad a_{0}=\cdots=a_{n}=0\right)
$$

Well, the premise, when spelled out more fully like this:

$$
\sum_{j=0}^{n} a_{j} \ell_{j}(x)=p_{0}(x)=0
$$

s holds true for all $x \in \mathbb{R}$. This gives us the idea of plugging in c_{j} for x :

$$
\begin{aligned}
a_{j} & =a_{j} \ell_{j}\left(c_{j}\right) \\
& =a_{0} \ell\left(c_{j}\right)+a_{1} \ell_{1}\left(c_{j}\right)+\cdots+a_{n} \ell_{n}\left(c_{j}\right) \\
& =p_{0}\left(c_{j}\right) \\
& =0
\end{aligned}
$$

This is true for each $j=0,1, \ldots, n$. We conclude that $a_{0}=\cdots=a_{n}=0$ and therefore β is linearly independent.

We would normally next show that $\beta=\left\{\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right\}$ is panning. But since $\operatorname{dim}\left(\mathbb{R}_{n}[x]\right)=n+1$ and $|\beta|=n+1$, it follows from linear algebra β is a basis for $\mathbb{R}_{n}[x]$. Consequently, every n-th (or lower) degree polynomial in $\mathbb{R}_{n}[x]$ is a unique linear combination of polynomials in β, so that if $L \in \mathbb{R}_{n}[x]$, then $\exists b_{0}, \ldots, b_{n} \in \mathbb{R}$ such that

$$
L=b_{0} \ell_{1}+\cdots+b_{n} \ell_{n}
$$

(b) Theorem (Lagrange Interpolation): Suppose we have $f \in C^{n+1}[a, b]$ and use the y-values of f at distinct points $x_{0}, x_{1}, \ldots, x_{n} \in[a, b]$ instead of the constants b_{i} in the construction of the Lagrange interpolating polynomial L. By the above discussion

$$
L(x)=f\left(x_{0}\right) \ell_{0}(x)+f\left(x_{1}\right) \ell_{1}(x)+\cdots+f\left(x_{n}\right) \ell_{n}(x)
$$

is the unique polynomial in $\mathbb{R}_{n}[x]$ passing through the points $\left(x_{i}, f\left(x_{i}\right)\right)$, and thus interpolating f. We claim that

$$
f(x)=L(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Consequently, a bound for the error $|f(x)-L(x)|$ may be found by maximizing $\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)$ on $[a, b]$.

Look at Theorem 3.3 in Burden and Faires, Numerical Analysis, 9th Edition for a nice proof.

