Project 4: Polynomial
Approximations of Continuous
Functions

Write up proofs for the following theorems:

(1) (see Exercise 6.6.3 and Theorem 6.6.3) Taylor’s Theorem: Let f € C"[a, b],
and let zo € (a,b). Then, for all z € (a,b) with x # z¢ there is some x* between
ro and x such that
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(Cauchy remainder)
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Some Remarks:

e Taylor’s Theorem concerns polynomial approximations of C" functions on
closed bounded intervals [a,b] in a neighborhood of a point.

o Let p(z) = >}, f(k;{(lxo)(,r — 20)* be the nth Taylor polynomial ap-

proximating f on [a,b]. The Lagrange form of the remainder R(xz*) can be
used to find a bound on error size of the approximation,
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where M = max,<;<p |f""(z)| and N = max{x — a, b — z}.



(2) (see Theorem 6.7.1) Weierstrass Approximation Theorem: For every con-
tinuous function f € Cla, b] and for any £ > 0 there exists a polynomial p € R[z]
approximating f uniformly on [a,b] within ¢,

[f(x) = p(a)] <e, V€ la,b]

(3) Lagrange Interpolating Polynomials

(a) Discussion and Definitions: Given distinct constants cg, c1,...,c, € R,
we can define n+1 distinct polynomials that each have all except one of the
co, - - -, Cp as roots, and such that they are linearly independent as vectors
in R, [z] (the vector space of polynomials of degree < n+1). This gives us
a special basis for R,,;1[z], one which allows the construction of an n + 1-
degree polynomial passing through the points (cg,bg), ..., (cn,bn) € R2.
The polynomials (), ..., 0,(x) € Ry[x] associated with the co, ..., ¢y
are given by
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As a consequence of this definition we have that
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This property of the polynomials means that g = {{y, ¢1,...,¢,} is a basis
for R, [z] (the real vector space of polynomials of degree < n)-see proof
below. As a result, if we specify a set of n+1 constants in by, b1, ..., b, € R,
the polynomial

L(z) = bili(x)
=0

is the unique polynomial in Ry, [x] such that L(c;) = b; forall j = 0,1,...,n,
called the nth Lagrange polynomial interpolating the ¢;. The process
outlined above of finding the polynomial L(x) satisfyingt L(c;) = b; for all
7 =0,1,...,nis called Lagrange interpolation.

Now for the proof that 8 = {lo,¢1,...,¢,} is a basis for R, [z]:

Proof: First, we prove that § = {ly,¢1,...,¢,} is linearly independent
in R, [z]. That is, letting pp(z) = 0 denote the zero polynomial, we prove
that

Vag,...,an €R, (aglo+ -+ anlp =py = ap=---=a,=0)

Well, the premise, when spelled out more fully like this:
> ajli(x) = po(z) =0
§=0
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s holds true for all x € R. This gives us the idea of plugging in ¢; for x:

aj = ajlj(c;)
= CL(ﬂ(Cj) + alél(cj) + -+ anﬁn(cj)
= polc))
=0
This is true for each j = 0,1,...,n. We conclude that a9 = --- =a, =0

and therefore (3 is linearly independent.

We would normally next show that g = {ly,¢1,...,¢,} is panning. But
since dim(Rp[z]) =n+1 and |3] = n + 1, it follows from linear algebra /3
is a basis for R, [z]. Consequently, every n-th (or lower) degree polynomial
in R,[x] is a unique linear combination of polynomials in 3, so that if
L € R, [z], then Jby, ..., b, € R such that

[L=bols + -+ bul|

Theorem (Lagrange Interpolation): Suppose we have f € C"[a, b]
and use the y-values of f at distinct points xg,z1,...,2, € [a,b] instead
of the constants b; in the construction of the Lagrange interpolating poly-
nomial L. By the above discussion

L(z) = f(zo)lo(x) + f(z)li(2) + - + f(2n)ln(z)

is the unique polynomial in R, [z] passing through the points (x;, f(x;)),
and thus interpolating f. We claim that
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Consequently, a bound for the error |f(x) — L(z)| may be found by maxi-

D ()
mizing fT(f)(,)) [[-y(x — x;) on [a,b].

Look at Theorem 3.3 in Burden and Faires, Numerical Analysis, 9th Edi-
tion for a nice proof.



