Series Challenge Problems

1. Find the sum of the series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{12}+\frac{1}{16}+\frac{1}{18}+\frac{1}{24}+\frac{1}{27}+\cdots
$$

where the terms are reciprocals of positive integers that are products of only 2's and 3's.
2. Find the interval of convergence of $\sum_{n=1}^{\infty} n^{3} x^{n}$ and find its sum.
3. Suppose

$$
\begin{aligned}
& u=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\cdots \\
& v=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\frac{x^{10}}{10!}+\cdots \\
& w=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots
\end{aligned}
$$

Show that $u^{3}+v^{3}+w^{3}-3 u v w=1$.
4. For $p>1$, evaluate

$$
\frac{1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+-\cdots} .
$$

5. Solve the initial value problem

$$
y^{\prime \prime}-2 x y^{\prime}-2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

6. Let $a_{0}=a_{1}=1, \quad n(n-1) a_{n}=(n-1)(n-2) a_{n-1}-(n-3) a_{n-2}$.

Evaluate $\sum_{n=1}^{\infty} a_{n}$.
7. Show that the series of reciprocals of positive integers that do not have 0 as a digit converges, and has sum less than 90 .
8. Show that the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(p n)!}{(n!)^{p}} x^{n}$ is $\frac{1}{p^{p}}$ for all positive integers p.
9. Show that for all positive integers p, q, the power series $\sum_{n=0}^{\infty} \frac{(n+p)!}{n!(n+q)!} x^{n}$ has an infinite radius of convergence.
10. Using the Maclaurin series for $x e^{x}$, show that $\sum_{n=0}^{\infty} \frac{n+1}{n!}=2 e$.
11. Verify $\int_{0}^{1} \frac{1}{x^{x}} d x=\sum_{n=1}^{\infty} \frac{1}{n^{n}}$.
12. Find the sum of each of the following series:
(a) $\sum_{n=0}^{\infty} x^{n}, \quad|x|<1$
(b) $\sum_{n=1}^{\infty} n x^{n-1}, \quad|x|<1$
(c) $\sum_{n=1}^{\infty} n x^{n}, \quad|x|<1$
(d) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(e) $\sum_{n=2}^{\infty} n(n-1) x^{n}, \quad|x|<1$
(f) $\sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}$
(g) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$

