## Sequences Challenge Problems

1. Let $a_{1}=0$ and $a_{n}$ to be the larger of $a_{n-1}$ and $\sin n$ for all $n \geq 2$. Is $a_{n}$ convergent? Why?
2. Let $a_{n+1}= \begin{cases}\frac{1}{2} a_{n} & \text { if } a_{n} \text { is even } \\ 3 a_{n}+1 & \text { if } a_{n} \text { is odd }\end{cases}$

Compute the sequence with $a_{1}=34$ until you see a pattern. Do the same for $a_{1}=25$. What might you assume about this sequence? Can you prove it?
3. For each of the following, give an example or explain why none exist.
(a) A bounded sequence that is not convergent.
(b) A convergent sequence that is not bounded.
(c) A monotone sequence that is not convergent.
(d) A convergent sequence that is not monotone.
4. For each of the following, if the statement is true, explain why. If false, give a counterexample.
(a) The sum of a convergent sequence and a divergent sequence diverges.
(b) The sum of two divergent sequences diverges.
(c) If $f(n)=a_{n}$ for all $n \in \mathbb{N}$ and $a_{n} \underset{n \rightarrow \infty}{\longrightarrow} L$, then $f(x) \underset{x \rightarrow \infty}{\longrightarrow} L$.
(d) If $f(n)=a_{n}$ for all $n \in \mathbb{N}$ and $f(x) \underset{x \rightarrow \infty}{\longrightarrow} L$, then $a_{n} \underset{n \rightarrow \infty}{\longrightarrow} L$.

