ODE Challenge Problems

1. Ignoring the constant of integration, find all functions f satisfying

$$
\left(\int f(x) d x\right)\left(\int \frac{1}{f(x)} d x\right)=-1 .
$$

2. A dog sees a rabbit and chases it over an open field. Assume their movement satisfies the following:

- The rabbit starts at the origin and the dog starts at the point $(L, 0)$.
- The rabbit runs upward along the y-axis at a constant speed.
- The dog runs straight at the rabbit at a constant speed.
(a) Assuming that the dog runs at the same speed as the rabbit, show that the function representing the dog's path satisfies

$$
x \frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

Find the solution to the ODE with the initial condition $y(L)=y^{\prime}(L)=0$. Hint: Use $z=\frac{d y}{d x}$ to reduce the problem to a first order $O D E$, and then solve back for y.
Does the dog catch the rabbit?
(b) Find another ODE and solve it assuming the dog travels twice as fast as the rabbit.
3. A pie is taken out of an oven at $5: 00 \mathrm{PM}$, and is at $100^{\circ} \mathrm{C}$. At $5: 10 \mathrm{PM}$ the pie is at $80^{\circ} \mathrm{C}$, and at $5: 20 \mathrm{PM}$, is at $65^{\circ} \mathrm{C}$. What is the temperature of the room? Hint: Use Newton's Law of Cooling: $H^{\prime}=k\left(H-H_{R}\right)$ where $H(t)$ is the temperture of the object, k is a proportionallity constant, and H_{R} is the room temperature, which is assumed constant.

