MATH 2300-001

Final Exam Review

1. $\frac{d}{d x}[\cosh (\operatorname{sech}(2 x))]=$
2. $\int \frac{x^{3}}{x^{2}-2 x+1} d x=$
3. $\int_{0}^{1} x^{4} e^{-x} d x=$
4. $\int_{0}^{1} e^{x^{2}} d x=$
5. $\int_{\pi / 4}^{\pi / 3} \tan ^{5} x \sec ^{4} x d x=$
6. $\int_{1}^{\infty} \frac{1}{x^{2} \sqrt{x^{2}-1}} d x=$
7. Find the general solution to the differential equation $(1+x) y^{\prime}+y=\sqrt{x}$.
8. Solve the initial value problem $y^{\prime \prime}-2 \sqrt{2} y^{\prime}+2 y=0, y(0)=0, y^{\prime}(0)=5$.
9. Determine if the sequence converges. If it does, find its limit.
(a) $\left\{\frac{(-4)^{n}}{n!}\right\}_{n=0}^{\infty}$
(b) $\left\{\frac{1-(-1)^{n}}{\sqrt{n}}\right\}_{n=1}^{\infty}$
10. Determine if the series diverges, converges conditionally, or converges absolutely. If the series converges, find its sum.
(a) $\sum_{k=0}^{\infty} \frac{1}{(k+1)(k+3)}$
(b) $\sum_{k=1}^{\infty} \frac{k+1}{k^{2}+(-1)^{k} k+1}$
(c) $\sum_{k=1}^{\infty} \frac{10^{k}}{k 4^{2 k+1}}$
(d) $\sum_{k=0}^{\infty} \frac{(-5)^{k}}{k!}$
11. Find the interval of convergence for the power series $\sum_{k=0}^{\infty} \frac{(k+1) x^{2 k-1}}{3^{k}}$
12. Find the Taylor series for $f(x)=\frac{1}{1-x}$ expanded around $x=5$.
13. Approximate $\cos \left(\frac{1}{2}\right)$ to 2 decimal places using the Maclaurin series for $\cos (x)$.
14. Using series, prove that $\cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta))$.
15. Convert the polar equation $\sin (2 \theta)=1$ to Cartesian coordinates.
16. Find the length of $r=\theta$ from $\theta=0$ to $\theta=\pi$.
17. Find the area between the loops of the limaçon $r=1+\sqrt{2} \sin \theta$.
