MATH 2300-001 Final Exam Review

1. $\frac{d}{dx} \left[\cosh(\operatorname{sech}(2x)) \right] =$

2.
$$\int \frac{x^3}{x^2 - 2x + 1} \, dx =$$

3.
$$\int_0^1 x^4 e^{-x} dx =$$

4.
$$\int_0^1 e^{x^2} dx =$$

5. $\int_{\pi/4}^{\pi/3} \tan^5 x \sec^4 x \, dx =$

6.
$$\int_1^\infty \frac{1}{x^2 \sqrt{x^2 - 1}} \, dx =$$

- 7. Find the general solution to the differential equation $(1 + x)y' + y = \sqrt{x}$.
- 8. Solve the initial value problem $y'' 2\sqrt{2}y' + 2y = 0, y(0) = 0, y'(0) = 5.$
- 9. Determine if the sequence converges. If it does, find its limit.

(a)
$$\left\{\frac{(-4)^n}{n!}\right\}_{n=0}^{\infty}$$

(b)
$$\left\{\frac{1-(-1)^n}{\sqrt{n}}\right\}_{n=1}^{\infty}$$

10. Determine if the series diverges, converges conditionally, or converges absolutely. If the series converges, find its sum.

(a)
$$\sum_{k=0}^{\infty} \frac{1}{(k+1)(k+3)}$$

(b) $\sum_{k=1}^{\infty} \frac{k+1}{k^2 + (-1)^k k + 1}$
(c) $\sum_{k=1}^{\infty} \frac{10^k}{k4^{2k+1}}$
(d) $\sum_{k=0}^{\infty} \frac{(-5)^k}{k!}$

11. Find the interval of convergence for the power series $\sum_{k=0}^{\infty} \frac{(k+1)x^{2k-1}}{3^k}$

- 12. Find the Taylor series for $f(x) = \frac{1}{1-x}$ expanded around x = 5.
- 13. Approximate $\cos(\frac{1}{2})$ to 2 decimal places using the Maclaurin series for $\cos(x)$.
- 14. Using series, prove that $\cos^2 \theta = \frac{1}{2} (1 + \cos(2\theta))$.
- 15. Convert the polar equation $\sin(2\theta) = 1$ to Cartesian coordinates.
- 16. Find the length of $r = \theta$ from $\theta = 0$ to $\theta = \pi$.
- 17. Find the area between the loops of the limaçon $r = 1 + \sqrt{2} \sin \theta$.