MATH 2300-Fall 2008
 Exam 3 Solutions

1. (a)

$$
\sum_{k=2}^{\infty}\left(-\frac{3}{4}\right)^{k+1}=\left(-\frac{3}{4}\right)^{3} \sum_{k=2}^{\infty}\left(-\frac{3}{4}\right)^{k-2}=-\frac{27}{64} \frac{1}{1+\frac{3}{4}}=-\frac{27}{64} \frac{4}{7}=-\frac{27}{112}
$$

(b)

$$
\begin{aligned}
& \sum_{k=0}^{n} \tan ^{-1}(k+1)-\tan ^{-1}(k)=\sum_{k=1}^{n+1} \tan ^{-1}(k)-\sum_{k=0}^{n} \tan ^{-1}(k)=\tan ^{-1}(n+1)-\tan ^{-1}(0)=\tan ^{-1}(n+1) . \\
& \sum_{k=0}^{\infty} \tan ^{-1}(k+1)-\tan ^{-1}(k)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \tan ^{-1}(k+1)-\tan ^{-1}(k)=\lim _{n \rightarrow \infty} \tan ^{-1}(n+1)=\frac{\pi}{2} .
\end{aligned}
$$

2. (a) $\lim _{k \rightarrow \infty} \frac{1}{\pi^{1 / k}}=1 \neq 0$. So, $\sum_{k=1}^{\infty} \frac{1}{\pi^{1 / k}}$ diverges by the Divergence Test.
(b) Since $\{k\}$ and $\{\ln k\}$ are monotone increasing to infinity, then $\left\{\frac{1}{k \ln k}\right\}$ is monotone decreasing to zero. So, by the Alternating Series Test, $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln k}$ converges.
Also, x and $\ln x$ are continuous functions and nonzero for $x>0$. So, $\frac{1}{x \ln x}$ is also continuous. Furthermore, it is decreasing since x and $\ln x$ are increasing. Note that

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=\int_{\ln 2}^{\infty} \frac{1}{u} d u=\lim _{a \rightarrow \infty}[\ln u]_{\ln 2}^{a}=\lim _{a \rightarrow \infty} \ln a-\ln (\ln 2)=\infty
$$

So, by the Integral Test, $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ diverges. Thus, $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln k}$ converges conditionally.
3. (a)

$$
\sum_{k=1}^{\infty} \frac{4+(-1)^{k}}{k^{5}} \leq \sum_{k=1}^{\infty} \frac{5}{k^{5}}
$$

The series converges absolutely by a comparison to a convergent p-series.
(b)

$$
\lim _{k \rightarrow \infty} \frac{\frac{1}{2 k+\ln k}}{\frac{1}{k}}=\lim _{k \rightarrow \infty} \frac{1}{2+\frac{\ln k}{k}}=\frac{1}{2+e^{\lim _{k \rightarrow \infty} \frac{\ln k}{k}}} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \frac{1}{2+e^{\lim _{k \rightarrow \infty} \frac{1 / k}{1}}}=\frac{1}{2+e^{0}}=\frac{1}{3} .
$$

Since $\sum_{k=1}^{\infty} \frac{1}{k}$ is a divergent p-series, we have by the Limit Comparison Test, that $\sum_{k=1}^{\infty} \frac{1}{2 k+\ln k}$ also diverges.
OR: $\sum_{k=1}^{\infty} \frac{1}{2 k+\ln k} \geq \sum_{k=1}^{\infty} \frac{1}{2 k \ln k+k \ln k}=\sum_{k=1}^{\infty} \frac{1}{3 k \ln k}$, which diverges by $2(\mathrm{~b})$. So, $\sum_{k=1}^{\infty} \frac{1}{2 k+\ln k}$ diverges by the Comparison test.
4. (a)

$$
\sum_{k=7}^{\infty} \frac{1}{(2 k-5)^{\frac{5}{2}}} \leq \sum_{k=7}^{\infty} \frac{1}{(2 k-k)^{\frac{5}{2}}}=\sum_{k=7}^{\infty} \frac{1}{k^{\frac{5}{2}}}
$$

The series converges absolutely by a comparison to a convergent p-series.
(b)

$$
\lim _{k \rightarrow \infty} \frac{(3 k+3)!}{3^{k+1}} \cdot \frac{3^{k}}{(3 k)!}=\lim _{k \rightarrow \infty} \frac{(3 k+3)(3 k+2)(3 k+1)}{3}=\lim _{k \rightarrow \infty}(k+1)(3 k+2)(3 k+1)=\infty .
$$

So, the series diverges by the Ratio Test.
5.

$$
\sum_{k=2}^{\infty} \frac{3}{(2 k)^{2}}=-\frac{3}{4}+\sum_{k=1}^{\infty} \frac{3}{4 k^{2}}=-\frac{3}{4}+\frac{3}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}=-\frac{3}{4}+\frac{3}{4} \cdot \frac{\pi^{2}}{6}=\frac{3}{4}\left(\frac{\pi^{2}-6}{6}\right)=\frac{\pi^{2}-6}{8} .
$$

6.

$$
\begin{aligned}
f^{(k)}(x) & =(-1)^{k} e^{-x} \\
f^{(k)}(0) & =(-1)^{k} \\
p_{n}(x) & =\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} x^{k} \\
& =\sum_{k=0}^{n} \frac{(-x)^{k}}{k!} .
\end{aligned}
$$

