MATH 2300 - Fall 2008
Exam 3 Solutions
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Ztan (k+1)—tan™( Ztan (k)= tan™' (k) = tan™! (n+1)—tan~'(0) = tan~" (n+1).
k=0

Ztan_l(k'—i— 1) —tan~'(k) = lim Ztan (k+1)—tan (k) = lim tan *(n+1) = —
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2. (a) kh_}rgo v =1+#0. So, Z Tk diverges by the Divergence Test.
k=1

b) Since {k} and {Ink} are monotone increasing to inﬁnit _ then {—1-} is monotone de-
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creasing to zero. So, by the Alternating Series Test, Z STy converges.

Also, z and In x are continuous functions and nonzero for x > 0. So, —— is also contin-
uous. Furthermore, it is decreasing since x and Inx are increasing. N ote that
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/ dx:/ —du = lim [Inul} , = lim Ina — In(In2) = oo.
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So, by the Integral Test, E Tk dlverges Thus, E converges conditionally.
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The series converges absolutely by a comparison to a convergent p-series.
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Since is a divergent p-series, we have by the Limit Comparison Test, that _
; gent p- Y P Z % + Ink
also diverges.

: 2 = hich di by 2(b).
OR ;Zkﬁtlnk = ;lenk+klnk ;%my which diverges by 2(b). So,
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Z 2%k +1Ink diverges by the Comparison test.
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The series converges absolutely by a comparison to a convergent p-series
(b)
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So, the series diverges by the Ratio Test
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