2. The axioms of set theory

Before introducing any set-theoretic axioms at all, we can introduce some more abbreviations.

$x \subseteq y$ abbreviates $\forall z \left(z \in x \rightarrow z \in y \right)$.

$x \subset y$ abbreviates $x \subseteq y \land x \neq y$.

For $x \subseteq y$ we say that x is included or contained in y, or that x is a subset of y. Then $x \subset y$ means proper inclusion, containment, or subset.

Now we introduce the axioms of ZFC set theory. We give both a formal and informal description of them. The informal versions will suffice for much of these notes.

Axiom 1. (Extensionality) If two sets have the same members, then they are equal. Formally:

$$\forall x \forall y \left[\forall z \left(z \in x \leftrightarrow z \in y \right) \rightarrow x = y \right].$$

Note that the other implication here holds on the basis of logic.

Axiom 2. (Comprehension) Given any set z and any property φ, there is a subset of z consisting of those elements of z with the property φ.

Formally, for any formula φ with free variables among x, z, w_1, \ldots, w_n we have an axiom

$$\forall z \forall w_1 \ldots \forall w_n \exists y \forall x \left(x \in y \leftrightarrow x \in z \land \varphi \right).$$

Note that the variable y is not free in φ.

From these first two axioms the existence of a set with no members, the empty set \emptyset, follows:

Proposition 2.1. There is a unique set with no members.

Proof. On the basis of logic, there is at least one set z. By the comprehension axiom, let y be a set such that $\forall x \left(x \in y \leftrightarrow x \in z \land x \neq x \right)$. Thus y does not have any elements. By the extensionality axiom, such a set y is unique. □

In general, the set asserted to exist in the comprehension axiom is unique; we denote it by $\{ x \in z : \varphi \}$. We sometimes write $\{ x : \varphi \}$ if a suitable z is evident.

Axiom 3. (Pairing) For any sets x, y there is a set which has them as members (possibly along with other sets). Formally:

$$\forall x \forall y \exists z \left(x \in z \land y \in z \right).$$

The unordered pair $\{ x, y \}$ is by definition the set $\{ u \in z : u = x \lor u = y \}$, where z is as in the pairing axiom. The definition does not depend on the particular such z that is chosen. This same remark can be made for several other definitions below. We define the singleton $\{ x \}$ to be $\{ x, x \}$.

Axiom 4. (Union) For any family \mathcal{A} of sets, we can form a new set A which has as elements all elements which are in at least one member of \mathcal{A} (maybe A has even more elements). Formally:

$$\forall \mathcal{A} \exists A \forall X \forall Y \left(x \in Y \land Y \in \mathcal{A} \rightarrow x \in A \right).$$
With A as in this axiom, we define $\bigcup A = \{ x \in A : \exists Y \in A (x \in Y) \}$. We call $\bigcup A$ the union of A. Also, let $x \cup y = \bigcup \{ x, y \}$. This is the union of x and y.

Axiom 5. (Power set) For any set x, there is a set which has as elements all subsets of x, and again possibly has more elements. Formally:

$$\forall x \exists y \forall z (z \subseteq x \rightarrow z \in y).$$

Axiom 6. (Infinity) There is a set which intuitively has infinitely many elements:

$$\exists x[\emptyset \in x \land \forall y \in x (y \cup \{ y \} \in x)].$$

If we take the smallest set x with these properties we get the natural numbers, as we will see later.

Axiom 7. (Replacement) If a function has domain a set, then its range is also a set. Here we use the intuitive notion of a function. Later we define the rigorous notion of a function. The present intuitive notion is more general, however; it is expressed rigorously as a formula with a function-like property. The rigorous version of this axiom runs as follows.

For each formula with free variables among $x, y, A, w_1, \ldots, w_n$, the following is an axiom.

$$\forall A \forall w_1 \ldots \forall w_n [\forall x \in A !y \varphi \rightarrow \exists Y \forall x \in A \exists y \in Y \varphi].$$

For the next axiom, we need another definition. For any sets x, y, let $x \cap y = \{ z \in x : z \in y \}$. This is the intersection of x and y.

Axiom 8. (Foundation) Every nonempty set x has a member y which has no elements in common with x. This is a somewhat mysterious axiom which rules out such anti-intuitive situations as $a \in a$ or $a \in b \in a$.

$$\forall x [x \neq \emptyset \rightarrow \exists y \in x (x \cap y = \emptyset)].$$

Axiom 9. (Choice) This axiom will be discussed carefully later; it allows one to pick out elements from each of an infinite family of sets. A convenient form of the axiom to start with is as follows. For any family A of nonempty sets such that no two members of A have an element in common, there is a set B having exactly one element in common with each member of A.

$$\forall A [\forall x \in A (x \neq \emptyset) \land \forall x \in A \forall y \in A (x \neq y \rightarrow x \cap y = \emptyset)] \rightarrow \exists B \forall x \in A !y (y \in x \land y \in B).$$