Solutions to exercises in Chapter 4

E4.1 Suppose that $\Gamma \vdash \varphi \rightarrow \psi$, $\Gamma \vdash \varphi \rightarrow \neg \psi$, and $\Gamma \vdash \neg \varphi \rightarrow \varphi$. Prove that Γ is inconsistent.

The formula $(\neg \varphi \rightarrow \varphi) \rightarrow \varphi$ is a tautology. Hence by Lemma 3.3, $\Gamma \vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$.

Since also $\Gamma \vdash \neg \varphi \rightarrow \varphi$, it follows that $\Gamma \vdash \varphi$. Hence $\Gamma \vdash \psi$ and $\Gamma \vdash \neg \psi$. Hence by Lemma 4.1, Γ is inconsistent.

E4.2 Let L be a language with just one non-logical constant, a binary relation symbol R.

Let Γ consist of all sentences of the form $\exists v_1 \forall v_0 [Rv_0v_1 \leftrightarrow \varphi]$ with φ a formula with only v_0 free. Show that Γ is inconsistent. Hint: take φ to be $\neg Rv_0v_0$.

By Theorem 3.27 we have

1. $\Gamma \vdash \forall v_0 [Rv_0v_1 \leftrightarrow \neg Rv_0v_0] \rightarrow [Rv_1v_1 \leftrightarrow \neg Rv_1v_1]$.

Now $[Rv_1v_1 \leftrightarrow \neg Rv_1v_1] \rightarrow (v_0 = v_0)$ is a tautology, so from (1) we obtain

$\Gamma \vdash \exists v_1 \forall v_0 [Rv_0v_1 \leftrightarrow \neg Rv_0v_0] \rightarrow (v_0 = v_0)$;

then generalization gives

$\Gamma \vdash \exists v_1 \forall v_0 [Rv_0v_1 \leftrightarrow \neg Rv_0v_0] \rightarrow (v_0 = v_0)]$.

Then by Proposition 3.39 we get

$\Gamma \vdash \exists v_1 \forall v_0 [Rv_0v_1 \leftrightarrow \neg Rv_0v_0] \rightarrow (v_0 = v_0)$.

But the hypothesis here is a member of Γ, so we get $\Gamma \vdash (v_0 = v_0)$. Hence by Lemma 4.1, Γ is inconsistent.

Alternate proof (due to a couple of students). Suppose that Γ is consistent. By the completeness theorem let A be a model of Γ. Taking φ to be $\neg Rv_0v_0$, we get $A \models \exists v_1 \forall v_0 [Rv_0v_1 \leftrightarrow \neg Rv_0v_0]$. Let $a : \omega \rightarrow A$ be any assignment. Then by Proposition 2.8(iv) there is a $b \in A$ such that $A \models \forall v_0 [Rv_0v_1 \leftrightarrow \neg Rv_0v_0][a_1^b]$. By the definition of satisfaction of \forall, it follows that for any $c \in A$ we have $A \models [Rv_0v_1 \leftrightarrow \neg Rv_0v_0][a_1^b]$. Hence $(c, b) \in R^A$ iff $(c, b) \notin R^A$, contradiction.

E4.3 Show that the first-order deduction theorem fails if the condition that φ is a sentence is omitted. Hint: take $\Gamma = \emptyset$, let φ be the formula $v_0 = v_1$, and let ψ be the formula $v_0 = v_2$.

$\{v_0 = v_1\} \vdash v_0 = v_1$,

$\{v_0 = v_1\} \vdash \forall v_1 (v_0 = v_1)$,

$\{v_0 = v_1\} \vdash \forall v_1 (v_0 = v_1) \rightarrow v_0 = v_2$ by Theorem 3.27,

$\{v_0 = v_1\} \vdash v_0 = v_2$.

On the other hand, let \(\mathcal{A} \) be the structure with universe \(\omega \) and define \(a = (0, 0, 1, 1, \ldots) \). Clearly \(\mathcal{A} \not\models [v_0 = v_1 \rightarrow v_0 = v_2][a] \). Hence \(\not\models v_0 = v_1 \rightarrow v_0 = v_2 \) by Theorem 3.2.

E4.4 In the language for \(\mathcal{A} \) defined \((\omega, S, 0, +, \cdot) \), let \(\tau \) be the term \(v_0 + v_1 \cdot v_2 \) and \(\nu \) the term \(v_0 + v_2 \). Let \(a \) be the sequence \((0, 1, 2, \ldots) \). Let \(\rho \) be obtained from \(\tau \) by replacing the occurrence of \(v_1 \) by \(\nu \).

(a) Describe \(\rho \) as a sequence of integers.
(b) What is \(\rho_{\mathcal{A}}(a) \)?
(c) What is \(\nu_{\mathcal{A}}(a) \)?
(d) Describe the sequence \(a^1_{\nu_{\mathcal{A}}(a)} \) as a sequence of integers.
(e) Verify that \(\rho_{\mathcal{A}}(a) = \tau_{\mathcal{A}}(a^1_{\nu_{\mathcal{A}}(a)}) \) (cf. Lemma 4.4.)

(a) \(\rho \) is \(v_0 + (v_0 + v_2) \cdot v_2 \); as a sequence of integers it is \(\langle 7, 5, 9, 7, 5, 15, 15 \rangle \).
(b) \(\rho_{\mathcal{A}}(a) = 0 + (0 + 2) \cdot 2 = 4 \).
(c) \(\nu_{\mathcal{A}}(a) = 0 + 2 = 2 \).
(d) \(a^1_{\nu_{\mathcal{A}}(a)} = (0, 2, 2, 3, \ldots) \).
(e) \(\rho_{\mathcal{A}}(a) = 4 \), as above; \(\tau_{\mathcal{A}}(a^1_{\nu_{\mathcal{A}}(a)}) = 0 + 2 \cdot 2 = 4 \).

E4.5 In the language for \(\mathcal{A} \) defined \((\omega, S, 0, +, \cdot) \), let \(\varphi \) be the formula \(\forall v_0(v_0 \cdot v_1 = v_1) \), let \(\nu \) be the formula \(v_1 + v_1 \), and let \(a = (1, 0, 1, 0, \ldots) \).

(a) Describe \(\text{Subf}^1_{\nu} \varphi \) as a sequence of integers.
(b) What is \(\nu_{\mathcal{A}}(a) \)?
(c) Describe \(a^1_{\nu_{\mathcal{A}}(a)} \) as a sequence of integers.
(d) Determine whether \(\mathcal{A} \models \text{Subf}^1_{\nu} \varphi[a] \) or not.
(e) Determine whether \(\mathcal{A} \models \varphi[a^1_{\nu_{\mathcal{A}}(a)}] \) or not.

(a) \(\text{Subf}^1_{\nu} \varphi \) is \(\forall v_0(v_0 \cdot (v_1 + v_1) = v_1 + v_1) \); as a sequence of integers it is

\[\langle 4, 5, 3, 9, 5, 7, 10, 10, 7, 10, 10 \rangle. \]

(b) \(\nu_{\mathcal{A}}(a) = (v_1 + v_1)_{\mathcal{A}}(\langle 1, 0, 1, 0, \ldots \rangle) = 0 + 0 = 0 \).
(c) \(a^1_{\nu_{\mathcal{A}}(a)} = (1, 0, 1, 0, \ldots) \).
(d) \(\mathcal{A} \models \text{Subf}^1_{\nu} \varphi[a] \) iff \(\mathcal{A} \models [\forall v_0(v_0 \cdot (v_1 + v_1) = v_1 + v_1)](\langle 1, 0, 1, 0, \ldots \rangle) \) iff for all \(a \in \omega \), \(a \cdot (0 + 0) = 0 + 0 \); this is true.
(e) \(\mathcal{A} \models \varphi[a^1_{\nu_{\mathcal{A}}(a)}] \) iff \(\mathcal{A} \models [\forall v_0(v_0 \cdot v_1 = v_1)](\langle 1, 0, 1, 0, \ldots \rangle) \) iff for all \(a \in \omega \), \(a \cdot 0 = 0 \); this is true.

E4.6 Show that the condition in Lemma 4.6 that

no free occurrence of \(v_i \) in \(\varphi \) is within a subformula of the form \(\forall v_k \mu \) with \(v_k \) a variable occurring in \(\nu \)

is necessary for the conclusion of the lemma.
In the language for $\mathcal{L} = (\omega, S, 0, +, \cdot)$, let φ be the formula $\exists v_1 [Sv_1 = v_0]$, $\nu = v_1$, and $a = 1, 1, \ldots)$. Note that the condition on v_0 fails. Now $\text{Subf}_{v_1} \varphi$ is the formula $\exists v_1 [Sv_1 = v_1]$, and there is no $a \in \omega$ such that $Sa = a$, and hence $\mathcal{A} \not\models \text{Subf}_{v_1} \varphi[a]$. Also, $\nu^A(a) = v_1^A(a) = a_1 = 1$, and hence $a_0^{\nu^A(a)} = 1$. Since $S0 = 1$, it follows that $\mathcal{A} \not\models \varphi[a_0^{\nu^A(a)}]$.

E4.7 Let \mathcal{A} be an \mathcal{L}-structure, with \mathcal{L} arbitrary. Define $\Gamma = \{ \varphi : \varphi$ is a sentence and $\mathcal{A} \models \varphi[a]$ for some $a : \omega \to A \}$. Prove that Γ is complete and consistent.

Note by Lemma 4.4 that $\mathcal{A} \models \varphi[a]$ for some $a : \omega \to A$ iff $\mathcal{A} \models \varphi[a]$ for every $a : \omega \to A$. Let φ be any sentence. Take any $a : \omega \to A$. If $\mathcal{A} \models \varphi[a]$, then $\varphi \in \Gamma$ and hence $\Gamma \vdash \varphi$. Suppose that $\mathcal{A} \not\models \varphi[a]$. Then $\mathcal{A} \models \neg \varphi[a]$, hence $\neg \varphi \in \Gamma$, hence $\Gamma \vdash \neg \varphi$.

This shows that Γ is complete. Suppose that Γ is not consistent. Then $\Gamma \vdash \neg (v_0 = v_0)$ by Lemma 4.1. Then $\Gamma \models \neg (v_0 = v_0)$ by Theorem 3.2. Since \mathcal{A} is a model of Γ, it is also a model of $\neg (v_0 = v_0)$, contradiction.

E4.8 Call a set Γ strongly complete iff for every formula φ, $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$. Prove that if Γ is strongly complete, then $\Gamma \vdash \forall v_0 \forall v_1 (v_0 = v_1)$.

Assume that Γ is strongly complete. Then $\Gamma \vdash v_0 = v_1$ or $\Gamma \vdash \neg (v_0 = v_1)$. If $\Gamma \vdash v_0 = v_1$, then by generalization, $\Gamma \vdash \forall v_0 \forall v_1 (v_0 = v_1)$. Suppose that $\Gamma \vdash \neg (v_0 = v_1)$. Then by generalization, $\Gamma \vdash \forall v_0 \neg (v_0 = v_1)$. By Theorem 3.27, $\Gamma \vdash \forall v_0 \neg (v_0 = v_1) \to \neg (v_1 = v_1)$. Hence $\Gamma \vdash \neg (v_1 = v_1)$. But also $\Gamma \vdash v_1 = v_1$ by Proposition 3.4, so Γ is inconsistent by Lemma 4.1, and hence again $\Gamma \vdash \forall v_0 \forall v_1 (v_0 = v_1)$.

E4.9 Prove that if Γ is rich, then for every term σ with no variables occurring in σ there is an individual constant c such that $\Gamma \vdash \sigma = c$.

By richness we have $\Gamma \vdash \exists v_0 (v_0 = \sigma) \to c = \sigma$ for some individual constant c. Then using (L4) it follows that $\Gamma \vdash c = \sigma$.

E4.10 Prove that if Γ is rich, then for every sentence φ there is a sentence ψ with no quantifiers in it such that $\Gamma \vdash \varphi \leftrightarrow \psi$.

We proceed by induction on the number m of symbols \neg, \to, \forall in φ. (More exactly, by the number of the integers 1,2,4 that occur in the sequence φ.) If $m = 0$, then φ is atomic and we can take $\psi = \varphi$. Assume the result for m and suppose that φ has $m + 1$ integers 1,2,4 in it. Then there are three possibilities. First, $\varphi = \neg \varphi'$. Let ψ' be a quantifier-free sentence such that $\Gamma \vdash \varphi' \leftrightarrow \psi'$. Then $\Gamma \vdash \varphi \leftrightarrow \neg \psi'$. Second, $\varphi = (\varphi' \to \varphi'')$. Choose quantifier-free sentences ψ' and ψ'' such that $\Gamma \vdash \varphi' \leftrightarrow \psi'$ and $\Gamma \vdash \varphi'' \leftrightarrow \psi''$. Then $\Gamma \vdash \varphi \leftrightarrow (\psi' \to \psi'')$. Third, $\varphi = \forall v_i \varphi'$. By richness, let c be an individual constant such that $\Gamma \vdash \exists v_i \neg \varphi' \to \text{Subf}^{v_i}_c \neg \varphi'$. Then by Theorem 3.33 we get

1. $\Gamma \vdash \exists v_i \neg \varphi' \leftrightarrow \text{Subf}^{v_i}_c \neg \varphi'$.

Now $\text{Subf}^{v_i}_c \varphi'$ has only m integers 1,2,4 in it, so by the inductive hypothesis there is a sentence ψ with no quantifiers in it such that $\Gamma \vdash \text{Subf}^{v_i}_c \varphi' \leftrightarrow \psi$ and hence

2. $\Gamma \vdash \text{Subf}^{v_i}_c \neg \varphi' \leftrightarrow \neg \psi$.

3
From (1) and (2) and a tautology we get $\Gamma \vdash \neg \exists v_1 \varphi' \leftrightarrow \psi$. Then by Proposition 3.31, $\Gamma \vdash \forall v_i \varphi' \leftrightarrow \psi$, finishing the inductive proof.

E4.11 Describe sentences in a language for ordering which say that $<$ is a linear ordering and there are infinitely many elements. Prove that the resulting set Γ of sentences is not complete.

Let Γ consist of the following sentences:
\[
\neg \exists v_0 (v_0 < v_0);
\forall v_0 \forall v_1 \forall v_2 [v_0 < v_1 \land v_1 < v_2 \rightarrow v_0 < v_2];
\forall v_0 \forall v_1 [v_0 < v_1 \lor v_0 = v_1 \lor v_1 < v_0];
\bigwedge_{i<j<n} \neg (v_i = v_j) \text{ for every positive integer } n.
\]

The following sentence φ holds in $(\mathbb{Q}, <)$ but not in $(\omega, <)$:
\[
\forall v_0 \forall v_1 [v_0 < v_1 \rightarrow \exists v_2 (v_0 < v_2 \land v_2 < v_1)].
\]

Since φ does not hold in $(\omega, <)$, we have $\Gamma \not\vdash \varphi$, by Theorem 4.2. But since φ holds in $(\mathbb{Q}, <)$, we also have $\Gamma \not\vdash \neg \varphi$ by Theorem 4.2. So Γ is not complete.

E4.12 Prove that if a sentence φ holds in every infinite model of a set Γ of sentences, then there is an $m \in \omega$ such that it holds in every model of Γ with at least m elements.

Suppose that φ holds in every infinite model of a set Γ of sentences, but for every $m \in \omega$ there is a model M of Γ with at least m elements such that φ does not hold in M. Let Δ be the following set:
\[
\Gamma \cup \left\{ \bigwedge_{i<j<n} \neg (v_i = v_j) : n \text{ a positive integer} \right\} \cup \{\neg \varphi\}.
\]

Our hypothesis implies that every finite subset Δ' of Δ has a model; for if m is the maximum of all n such that the above big conjunction is in Δ', then the hypothesis yields a model of Δ'. By the compactness theorem we get a model \overline{N} of Δ. Thus \overline{N} is an infinite model of Γ in which φ does not hold, contradiction.

E4.13 Let L be the language of ordering. Prove that there is no set Γ of sentences whose models are exactly the well-ordering structures.

Suppose there is such a set. Let us expand the language L to a new one L' by adding an infinite sequence c_m, $m \in \omega$, of individual constants. Then consider the following set Θ of sentences: all members of Γ, plus all sentences $c_{m+1} < c_m$ for $m \in \omega$. Clearly every finite subset of Θ has a model, so let $\overline{A} = (A, <, a_i)_{i<\omega}$ be a model of Θ itself. (Here a_i is the 0-ary function, i.e., element of A, corresponding to c_i.) Then $a_0 > a_1 > \cdots$; so $\{a_i : i \in \omega\}$ is a nonempty subset of A with no least element, contradiction.
Suppose that Γ is a set of sentences, and φ is a sentence. Prove that if $\Gamma \vdash \varphi$, then $\Delta \models \varphi$ for some finite $\Delta \subseteq \Gamma$.

We prove the contrapositive: Suppose that for every finite subset Δ of Γ, $\Delta \not\models \varphi$. Thus every finite subset of $\Gamma \cup \{\neg \varphi\}$ has a model, so $\Gamma \cup \{\neg \varphi\}$ has a model, proving that $\Gamma \not\models \varphi$.

Suppose that f is a function mapping a set M into a set N. Let $R = \{(a, b) : a, b \in M \text{ and } f(a) = f(b)\}$. Prove that R is an equivalence relation on M.

If $a \in M$, then $f(a) = f(a)$, so $(a, a) \in R$. Thus R is reflexive on M. Suppose that $(a, b) \in R$. Then $f(a) = f(b)$, so $f(b) = f(a)$ and hence $(b, a) \in R$. Thus R is symmetric. Suppose that $(a, b) \in R$ and $(b, c) \in R$. Then $f(a) = f(b)$ and $f(b) = f(c)$, so $f(a) = f(c)$ and hence $(a, c) \in R$.

Suppose that R is an equivalence relation on a set M. Prove that there is a function f mapping M into some set N such that $R = \{(a, b) : a, b \in M \text{ and } f(a) = f(b)\}$.

Let N be the collection of all equivalence classes under R. For each $a \in M$ let $f(a) = [a]_R$. Then $(a, b) \in R$ iff $a, b \in M$ and $[a]_R = [b]_R$ iff $a, b \in M$ and $f(a) = f(b)$.

Let Γ be a set of sentences in a first-order language, and let Δ be the collection of all sentences holding in every model of Γ. Prove that $\Delta = \{\varphi : \varphi$ is a sentence and $\Gamma \vdash \varphi\}$.

For \subseteq, suppose that $\varphi \in \Delta$. To prove that $\Gamma \vdash \varphi$ we use the compactness theorem, proving that $\Gamma \models \varphi$. Let \bar{A} be any model of Γ. Since $\varphi \in \Delta$, it follows that \bar{A} is a model of Γ, as desired.

For \supseteq, suppose that φ is a sentence and $\Gamma \vdash \varphi$. Then by the easy direction of the completeness theorem, $\Gamma \models \varphi$. That is, every model of Γ is a model of φ. Hence $\varphi \in \Delta$.

Prove (2) in the proof of Theorem 4.24.

By the completeness theorem it suffices to show that

$$\models \varphi \iff \exists v_n \ldots \exists v_{n+m-1} \left[\bigwedge_{j<m} (\sigma_j = v_{n+j}) \land Rv_n \ldots v_{n+m-1} \right].$$

So, let \bar{A} be any structure, and suppose that $a : \omega \to A$. First suppose that $\bar{A} \models \varphi[a]$. Then $(\sigma_0^\bar{A}(a), \ldots, \sigma_{m-1}^\bar{A}(a)) \in R^\bar{A}$. Let

$$b = (\cdots (a^n \sigma_0^\bar{A}(a) \sigma_1^\bar{A}(a)) \cdots)^{n+m-1}.$$

Let $j < m$. Since n is greater than each k such that v_k occurs in σ_j, we have $\sigma_j^\bar{A}(a) = \sigma^\bar{A}(b) = b_{n+j}$. Hence $\bar{A} \models (\sigma_j = v_{n+j})[b]$, and $\bar{A} \models Rv_n \ldots v_{n+m-1}[b]$. It follows that

$$\bar{A} \models \exists v_n \ldots \exists v_{n+m-1} \left[\bigwedge_{j<m} (\sigma_j = v_{n+j}) \land Rv_n \ldots v_{n+m-1} \right][a].$$
Thus we have shown that $\overline{A} \models \varphi[a]$ implies ($*$). Conversely, assume ($*$). Then there exist $x(0), \ldots, x(m - 1) \in A$ such that $\left[\bigwedge_{j < m} (\sigma_j = v_{n+j}) \land R_{v_n \ldots v_{n+m-1}} \right] [b]$, where $b = (\cdots (a^n_{x(0)})^{n+1})_{x(1)} \cdots)_{x(m-1)}$. Let $j < m$. Then $\sigma_j^A(a) = \sigma_j^A(b) = b_{n+j}$. Also, we have $\langle b_n, \ldots; b_{n+m-1} \rangle \in R^\overline{A}$. So $\langle \sigma_0^A(a), \ldots, \sigma_{m-1}^A(a) \rangle \in R^\overline{A}$. Hence $\overline{A} \models \varphi[a]$.

6