Math 6270 - Assignment 11

Due November 13, 2019

All groups are assumed to be finite, representations and characters are over \mathbb{C} .

- (1) Read pages 237-239 in [1] for a module theoretic approach to induced characters.
- (2) Let *H* be a subgroup of *G*, and let φ a class function of *H*. Show that the induced function φ^{G} as defined in class is a class function on *G*.
- (3) Let φ be a non-trivial character of A_4 of degree 1. Argue that the induced character φ^{A_5} is irreducible.

Hint: This can be done without actually computing φ and φ^{A_5} . First find the degrees of all irreducible characters of A_5 . Then use Frobenius reciprocity. Bonus: Give φ and φ^{A_5} explicitly.

- (4) (a) Let G be a Frobenius group with kernel N. Show that $C_G(x) \leq N$ for all $x \in N \setminus \{1\}$.
 - (b) Let G be a group with normal subgroup N such that $C_G(x) \leq N$ for all $x \in N \setminus \{1\}$. Show that N has a complement H in G. Is G a Frobenius group?

References

 D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.