Math 6270 - Assignment 9

Due October 30, 2019

All groups are assumed to be finite, representations and characters are over \mathbb{C} .

- (1) Let φ be a \mathbb{C} -representation of G with character χ and let $g \in G$. Show
 - (a) $\chi(g) = \chi(1)$ iff $g \in \ker \varphi$.
 - (b) $|\chi(g)| \leq \chi(1)$ with equality iff $\varphi(g)$ is a multiple of the identity matrix. (c) $\chi(g^{-1}) = \overline{\chi(g)}$.
 - Hint: Decompose the restriction of φ to $\langle g \rangle$ into irreducible representations.
- (2) Let $g \in G$. Show that g is conjugate to g^{-1} in G iff $\chi(g)$ is real for all characters χ of G.
- (3) The **kernel** of a character χ of G is defined as ker $\chi := \{g \in G \mid \chi(g) = \chi(1)\}$. Show for any $N \leq G$ that

 $N = \bigcap \{ \ker \chi \mid \chi \in \operatorname{Irr} (G), N \le \ker \chi \}$

(4) Read the example on page 233 of [1] for computing the character table of the quaternion group Q_8 . Argue that the character table of D_8 is the same.

References

 D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.