Math 6270 - Assignment 8

Due October 23, 2019

(1) Show the converse of Maschke's Theorem: Let G be a finite group whose order is a multiple of the characteristic of the field F. Then FG is not completely reducible as regular FG-module.

Hint: Show that the submodule $A := \{\sum_{g \in G} c_g g \mid \sum_{g \in G} c_g = 0\}$ of FG intersects every nontrivial submodule nontrivially.

- (2) Let $n \in \mathbb{N}$ and F a field.
 - (a) Determine the minimal right ideals of $F^{n \times n}$.
 - (b) Show that $F^{n \times n}$ is a simple ring (i.e., has no proper non-trivial ideals).
- (3) Let G be a cyclic group of order n. Determine all irreducible representations of G over C, Q, respectively. Which are faithful? Describe the structure of CG and of QG.
- (4) Describe the structure of $\mathbb{C}A_4$. Find all irreducible \mathbb{C} -representations of A_4 .