Hierarchy Theorems

Peter Mayr

Computability Theory, April 14, 2021

(ロ)、(型)、(E)、(E)、 E) の(()

So far we proved the following inclusions:

 $\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{EXPTIME}\subseteq\mathsf{EXPSPACE}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question Which are proper?

Space constructible functions

In simulations we often want to fix s(n) space on the working tape before starting the actual computation without accruing any overhead in space complexity.

Definition

 $s(n) \ge \log(n)$ is **space constructible** if there exists $N \in \mathbb{N}$ and a DTM with input tape that on any input of length $n \ge N$ uses and marks off s(n) cells on its working tape and halts.

Note

Equivalently, s(n) is space constructible iff there exists a DTM with input and output that on input 1^n computes s(n) in space O(s(n)).

Example

 $\log n, n^k, 2^n$ are space constructible.

E.g. $\log_2 n$ space is constructed by counting the length n of the input in binary.

Little o-notation

Definition For $f, g: \mathbb{N} \to \mathbb{R}^+$ we say f = o(g) (read f is little-o of g) if $\dots \qquad f(n)$

$$\lim_{n\to\infty}\frac{r(n)}{g(n)}=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Intuitively: g grows much faster than f.

Note

Separating space complexity classes

Space Hierarchy Theorem

Let s(n) be space constructible and r(n) = o(s(n)). Then DSPACE $(r(n)) \subseteq$ DSPACE(s(n)).

Proof.

Construct $L \in DSPACE(s(n)) \setminus DSPACE(r(n))$ by diagonalization.

Define DTM D such that on input x of length n:

1. D marks s(n) space on working tape. Reject if D ever uses more space later.

- 2. If $x \neq \underbrace{0 \dots 0}_{padding} \sharp(M)$ for some DTM M, reject.
- 3. D simulates M on x within s(n) space.
- 4. If M accepts x, D rejects (and conversely).

Space complexity of D:

- By the condition in step 1, D uses only s(n) space but may loop on some x [Then x ∉ L(M) and x ∉ L(D)].
- By adding a time counter to D we obtain a DTM D' that uses O(s(n)) space and halts on all inputs in 2^{O(s(n))} time such that L(D) = L(D') (HW).

Thus L(D) is computed in O(s(n)) space.

Claim: L(D) is not computable in o(s(n)) space.

- Let M run in space r(n) with r(n) = o(s(n)) and halt on all inputs.
- In step 3, depending on M's tape alphabet, c ≥ 1 cells of D may be needed to encode a single cell of M. Hence D needs cr(n) space to simulate M.
- Since r(n) = o(s(n)), ∃N ∀n ≥ N : cr(n) < s(n) and D's simulation runs to completion if M's input has length ≥ N.</p>

• Then $x := 0^N \sharp(M)$ is accepted by M iff x is rejected by D.

• Hence $L(D) \neq L(M)$.

Consequences of the Space Hierarchy Theorem

```
Corollary
DSPACE(n^k) \neq DSPACE(n^\ell) if 0 \le k < \ell.
Corollary
NL \neq PSPACE
Corollary
PSPACE \neq EXPSPACE
Proof.
HW
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Time constructible functions

In simulations we often want to determine whether a TM has run for t(n) steps without accruing any overhead in time complexity (i.e. in O(t(n)) time).

Definition

 $t(n) \ge n \log(n)$ is **time constructible** if there exists a DTM with input tape that on input 1^n computes t(n) in O(t(n)) time.

Example

 $n \log n, n^k, 2^n \dots$ are time constructible.

DTM to count the length of the input in binary:

- The counter increments by 1 (requiring O(log n) steps) for every input position.
- Running time is $O(n \log n)$.

It follows that $n \log n$ can be computed in binary in $O(n \log n)$ time.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Separating time complexity classes

Time Hierarchy Theorem

Let t(n) be time constructible and $r(n) = o(\frac{t(n)}{\log t(n)})$. Then $\text{DTIME}(r(n)) \subsetneq \text{DTIME}(t(n))$.

Proof.

Similar to Space Hierarchy Theorem but counting the number of steps in the simulation of M yields log-factor overhead.

Define a single tape DTM D such that on input x of length n:

1. Compute t(n) and store $\frac{t(n)}{\log(t(n))}$ in a binary counter.

2. If
$$x \neq \underbrace{0 \dots 0}_{\text{padding}} \sharp(M)$$
 for some DTM M, reject.

- 3. D simulates M on x. Before each step of M decrease time counter by 1; reject if 0 is reached.
- 4. If M accepts x, D rejects (and conversely).

Running time of D:

- Steps 1, 2 take O(t(n)) time since t(n) is time constructible.
- To simulate M efficiently in step 3, D's tape contains M's current state, symbol read, δ and counter close to each other:
- Split D's single tape into 3 tracks (cells with numbers =₃ 0, 1, 2, resp.).
 - Track 0 simulates M's tape.
 - Track 1 holds M's state and transition function δ.
 - Track 2 holds the counter.
- When M's head moves on track 0, D shifts contents of tracks 1,2 accordingly (constant time overhead for tracks 0, 1, O(log t(n)) for track 2).

If M runs in time r(n), then D can simulate M in O(r(n)) time (before multiplying log t(n) to D's running time).

L(D) is computed in $O(\frac{t(n)}{\log t(n)} \cdot \log t(n)) = O(t(n))$ time.

Claim: L(D) is not decidable in $o(\frac{t(n)}{\log t(n)})$ time.

• Let M run in time r(n) with $r(n) = o(\frac{t(n)}{\log t(n)})$.

- In step 3, depending on M's tape alphabet, several cells of D may be needed to encode a single cell of M. Hence D needs cr(n) time to simulate M (without the time counter).
- ▶ $\exists N \forall n \ge N$: $cr(n) < \frac{t(n)}{\log t(n)}$ and D's simulation runs to completion if M's input has length $\ge N$.
- Then $x := 0^N \sharp(M)$ is accepted by M iff x is rejected by D.

• Hence $L(D) \neq L(M)$.

Consequences of the Time Hierarchy Theorem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

```
Corollary \mathsf{DTIME}(n^k) \neq \mathsf{DTIME}(n^\ell) if 0 \le k < \ell.
```

 $\begin{array}{l} \text{Corollary} \\ \text{P} \neq \text{EXPTIME} \end{array}$

Proof. HW