
Space complexity

Peter Mayr

Computability Theory, April 7, 2021

Computation may use less space than the actual input

Example

Multi-tape DTM deciding L = {0k1k : k ∈ N}:
I Input tape: holds input x ∈ {0, 1}∗

I Working tape: Count leading 0s in binary, say k .
Check that the last 0 is followed by k 1s and then .

Required space: O(log |x |) for the computation (not counting the
input).

Space complexity without input and output
The following applies to deterministic and non-deterministic
machines.

Definition
A TM M with input and output is a 3-tape TM such that

I the input tape holds the input and is read-only,

I the working tape has no restrictions,

I on the output tape the head moves only right (write-only).

Definition
Let M be a TM with input and output that halts on any input.
M runs in space (has (worst case) space complexity) s(n)
if s(n) is the maximum number of cells on the working tape used
by M on any computational branch on any input x with |x | = n.

Note
For ease of comparing time and space complexity, we update our
definition of running time to TMs with input & output as well.

Common classes of space complexity

Definition
DSPACE(s(n)) := {L(M) : M is a DTM with input & output

of space complexity O(s(n))}
NSPACE(s(n)) := {L(M) : M is a non-deterministic TM with input

& output of space complexity O(s(n))}

Definition
LOGSPACE := L := DSPACE(log n)
NLOGSPACE := NL := NSPACE(log n)
PSPACE := DSPACE(nO(1)) =

⋃
k∈N DSPACE(nk)

EXPSPACE := DSPACE(2n
O(1)

) =
⋃

k∈N DSPACE(2n
k
)

Question
What about languages that can be decided in constant space?

Basic inclusions

Theorem

1. DTIME(t(n)) ⊆ NTIME(t(n)),
DSPACE(s(n)) ⊆ NSPACE(s(n))

2. DTIME(t(n)) ⊆ DSPACE(t(n)),
NTIME(t(n)) ⊆ NSPACE(t(n))

3. NTIME(t(n)) ⊆ DSPACE(t(n))

4. NSPACE(s(n)) ⊆ DTIME(2O(s(n))) if s(n) ≥ log n.

Proof.
1. follows since every DTM can be considered as non-deterministic
TM.
2. follows since a TM can scan only 1 tape cell in any step.

Proof 3.
Recall: A non-deterministic TM N that runs in time t(n) can be
simulated by a DTM M doing a breadth first search on N’s
computation tree.

I The input x remains unchanged on the input tape of M.

I On M’s work tape we

1. first fix the current computation branch (a1, . . . , as) with
ai ≤ max(∆(q, a)) and s ≤ t(n),

2. then simulate N’s computation for that fixed choice
(a1, . . . , as).

Each task only requires space O(t(n)) on the DTM M.

Proof 4.
Let N be a non-deterministic TM with input (no output) and one
working tape that runs in space s(n).

Idea: Consider the configurations of N as vertices of a digraph
with an edge i → j if j is a successor configuration of i . Check
whether there is a path from the starting configuration start for
input x to some accepting configuration.

Algorithm (Enumerate configurations reachable from start)

1. R := {start} . . . vertices reachable from start

B := {start} . . . boundary of the currently reachable set

2. For i ∈ B do

3. B := B \ {i}
4. For every successor configuration j of i do

5. If j 6∈ R, then R := R ∪ {j},B := B ∪ {j}.
6. Return true if there is an acceptable configuration in R; else

false.

Running time:

I Assume N has q states and a tape alphabet of size d .
For an input of length n, there are

≤ qn s(n)d s(n) = 2O(s(n))

configurations in N’s computation tree.

I Hence the loop in 2. is executed at most 2O(s(n)) times.

I The loop in 4. is executed a constant number of times.

I Updating R,B in 5. is polynomial in 2O(s(n)).

I Hence the total running time is polynomial in 2O(s(n)).

