
P and NP

Peter Mayr

Computability Theory, April 5, 2021

Complexity of problems

Our definition of the complexity of TMs (that always halt) can be
extended to their (computable) languages.

Definition
DTIME(t(n)) := {L(M) : M is a DTM with

running time O(t(n))}
NTIME(t(n)) := {L(M) : M is a non-deterministic TM with

running time O(t(n))}

Common complexity classes:

Definition
P := DTIME(nO(1)) =

⋃
k∈N DTIME(nk)

NP := NTIME(nO(1)) =
⋃

k∈N NTIME(nk)

EXPTIME := DTIME(2n
O(1)

) =
⋃

k∈N DTIME(2n
k
)

NEXPTIME := NTIME(2n
O(1)

) =
⋃

k∈N NTIME(2n
k
)

Graphs

Definition
I A directed graph (digraph) G = (V ,E) is a set

V = {1, . . . , n} of vertices with a binary relation E (edges)
on V .

I The adjacancy matrix of G is the n × n-matrix (aij)1≤i ,j≤n
with

aij =

{
1 if (i , j) ∈ E ,

0 else.

I v0 → v1 → · · · → vk is a (directed) path in G from vertices
v0 to vk if (vi , vi+1) ∈ E for all i ∈ {0, . . . , k − 1}.

Example

Digraph G = ({1, 2, 3}, {(1, 2), (2, 3), (1, 3)}) has adjacency matrix 0 1 1
0 0 1
0 0 0

Examples in P

Reachability (Path)

Input: digraph G = (V ,E) with vertices {1, . . . , n} by its
adjacency matrix
Question: Is there a path in G from 1 to n?

Brute force: Enumerating all paths in G is O(nn).

Algorithm (Enumerate all vertices reachable from 1)

1. R := {1} . . . vertices reachable from 1
B := {1} . . . boundary of the currently reachable set

2. For i ∈ B do

3. B := B \ {i}
4. For j ∈ {1, . . . , n} with (i , j) ∈ E do

5. If j 6∈ R, then R := R ∪ {j},B := B ∪ {j}.
6. Return n ∈ R.

Correctness: The algorithm enumerates all vertices that are
reachable from 1 into the set R. Hence it returns the correct
answer in 6.

Input size: n2 for the adjacency matrix

Running time:

I Loops in 2. and 4. are executed at most n times each.

I Updating R,B in 5. is polynomial in n.

I Hence the total running time is polynomial in n.

Question
What’s the space complexity of the previous algorithm?

Theorem
Reachability is in P.

Regular languages

Theorem
Every regular language is in P.

Proof.
Any regular language is decided by some DFA whose running time
is equal to the length of the input.

Examples in NP

Hamiltonian cycle (Traveling Salesman)

Input: digraph G = (V ,E) with vertices {1, . . . , n} by adjacency
matrix
Question: Is there a cyclic path in G visiting each vertex exactly
once?

Brute force: Enumerating all cycles in G and checking whether one
is Hamiltonian is O(nn).

Non-deterministic TM N (with several tapes)

1. Guess: N non-deterministically writes n numbers from
{1, . . . , n} (on tape 2).

2. Verify: N checks whether these numbers represent a
Hamiltonian cycle (on tape 3).

Correctness:
I If G has a Hamiltonian cycle, then one computational branch

of N will find it in 1. and accept in 2.
I If G has no Hamiltonian cycle, then all computational

branches of N will reject.

Input size: n2 for the adjacency matrix

Running time:
I In 1. a list of n numbers is written in O(n log(n)) steps.
I In 2. check that

I any given vertex i has not appeared before
I any i and its successor j are connected by E .

I Hence the total running time is polynomial in n.

Theorem
Hamiltonian cycle is in NP.

Note
I Not known whether Hamiltonian cycle is in P.

I Deterministic algorithm using dynamic programming runs in
O(n22n) (Bellman, Held, Karp 1962).

Verification

Guessing and verifying is the typical structure of a non-
deterministic algorithm.

Definition
A verifier for a language L is a DTM V such that

L = {x : V accepts (x , c) for some string c}.

Here c is a certificate (witness, proof of membership) that allows
to verify x ∈ L.
A polynomial time verifier is a DTM that runs in polynomial
time in |x |.

Note
I For a polynomial time verifier V we may assume that the

certificate c for any x has polynomial length in |x | since V
cannot access more of c anyway.

I If x ∈ L, the verifier V does need to accept (x , c) for all c .

I A verifier V for L does not need to verify x 6∈ L.

Example

I A certificate c for a digraph G having a Hamiltonian cycle is
just the sequence of vertices forming a Hamiltonian cycle.

I Clearly such a c is polynomial in |G | and can be verified in
polynomial time.

I What is a certificate to show that G does not have a
Hamiltonian cycle?

Theorem
NP is the class of languages that have polynomial time verifiers.

Proof.
⊆: Let L ∈ NP be decided by non-deterministic polytime N.
Construct a polytime verifier V:

I If x ∈ L, let c denote the sequence of choices of N in an
accepting branch for x (such c of polynomial size must exist).

I On input (x , c), V simulates N’s computation on the branch c
(runs in polytime in |x |).

I V accepts (x , c) if N accepts x on the branch c ; else V rejects.

⊇: Assume L has a verifier V running in time ≤ |x |k .
Construct a non-deterministic N that decides L in polytime:

I On input x , N guesses a certificate c of length ≤ |x |k .

I Run V on input (x , c) and accept if V accepts; else N rejects.

Note: The existence of k suffices to prove the existence of N (we
don’t need to know the actual value).

