Arithmetical hierarchy and Turing jumps

Peter Mayr

Computability Theory, March 22, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question

What is the connection between

the arithmetical hierarchy (classification of sets by definability)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and Turing degrees (classification by computability)?

Finite approximations

Analyzing oracle machines requires computable approximations: If $\varphi_e^A(x) \downarrow$, then only a finite part of A is used in this computation.

For $A \subseteq \mathbb{N}$ and $s \in \mathbb{N}$, the *s*-tuple

$$(\chi_A(0),\chi_A(1),\ldots,\chi_A(s-1))\in\{0,1\}^s$$

is an **initial segment** (finite approximation) of χ_A .

For
$$\sigma \in \{0,1\}^s$$
 write
 $|\sigma| = s$,
 $\sigma = (\sigma(0), \dots, \sigma(s-1))$ and
 $\sharp(\sigma) := \prod_{i < |s|} p_i^{\sigma(i)+1}$ (prime power encoding).
Note that $|\sigma|, \sigma(i)$ are computable from $\sharp(\sigma), i$.

For $\sigma, \tau \in \{0,1\}^*$ write $\sigma \subseteq \tau$ and call σ an initial segment of τ if $|\sigma| \leq |\tau|$ and $\sigma(i) = \tau(i)$ for all $i \leq |\sigma|$.

Definition

Let A ⊆ N. If M^A_e halts on input x with output y and if u is the maximum element for which the oracle is used (queried for u ∈ A) during the computation, write

$$\varphi_e^A(x) := y$$
 $\operatorname{use}_e^A(x) := u.$

use^{*A*}_{*e*} is called the **use function** corresponding to $\varphi_e^A(x)$.

- ▶ $\varphi_e^{\sigma}(x) := y$ if $\varphi_e^{A}(x) = y$, $\sigma \in \{0,1\}^*$ is an initial segment of $\chi_A \in \{0,1\}^{\mathbb{N}}$ and $use_e^{A}(x) < |\sigma|$ (i.e., only σ is queried).
- $\varphi_{e,s}^A(x) := y$ if $\varphi_e^A(x) = y$ is computed by M_e^A in < s steps and $e, x, y, \text{use}_e^A(x) < s$.
- $\varphi_{e,s}^{\sigma}(x) := y$ if $\varphi_{e,s}^{A}(x) = y$, $\sigma \in \{0,1\}^*$ is an initial segment of χ_A and $use_e^A(x) < |\sigma|$.
- $W_{e,s}^{\sigma} := \operatorname{domain} \varphi_{e,s}^{\sigma}$, etc.

Computable approximations

Lemma

- 1. $\varphi_e^{\mathcal{A}}(x) = y$ iff $\exists s \exists \sigma \subseteq \chi_{\mathcal{A}} : \varphi_{e,s}^{\sigma}(x) = y$
- 2. If $\varphi_{e,s}^{\sigma}(x) = y$, then $\forall t \ge s \ \forall \tau \supseteq \sigma : \ \varphi_{e,t}^{\tau}(x) = y$.
- 3. $W_{e,s}^{\sigma}$ (i.e. $\{(e, \sharp(\sigma), x, s) : \varphi_{e,s}^{\sigma}(x) \downarrow\})$ is computable.

Proof.

- 1. Any computation that halts does so after finitely many steps, using a finite part of the oracle.
- 2. If a computation halts after s steps with access to σ , its output will not change when given more time and a larger part of the oracle.
- 3. Run M_e on x with queries to σ until it halts or s steps are completed.

Post's Theorem relating Σ_n and $\emptyset^{(n)}$

Recall

B ⊆ N is Σ_n if there is some computable R ⊆ Nⁿ⁺¹ such that B = {x : ∃y₁ ∀y₂...∃/∀y_n (x, y₁,..., y_n) ∈ R}.
A' := {x : φ^A₂(x) ↓}.

Post's Theorem Let $n \in \mathbb{N}, B \subseteq \mathbb{N}$.

1. *B* is Σ_{n+1} iff *B* is c.e. in some \prod_n -set iff *B* is c.e. in some Σ_n -set.

- 2. $\emptyset^{(n)}$ is Σ_n -complete for n > 0.
- 3. B is Σ_{n+1} iff B is $\emptyset^{(n)}$ -c.e.
- 4. B is Δ_{n+1} iff $B \leq_T \emptyset^{(n)}$.

Note: Properties of Σ_1 relativize to $\Sigma_{n+1} = \Sigma_1^{\emptyset^{(n)}}$ by 3.

Proof 1.

 \Rightarrow : Let $B \in \Sigma_{n+1}$. Then we have $R \in \Pi_n$ such that

$$x \in B$$
 iff $\exists y \ R(x, y)$.

Then $B \in \Sigma_1^R$, hence *R*-c.e. by our characterization of *A*-c.e. sets.

⇐: Assume *B* is *A*-c.e. for some $A \in \prod_n$. Then for some *e*

$$x \in B \text{ iff } x \in W_e^A$$

iff $\exists s \exists \sigma : \sigma \subset \chi_A \land \underbrace{x \in W_{e,s}^\sigma}$

computable

Claim:
$$\sigma \subset \chi_A$$
 is Σ_{n+1}
 $\sigma \subset \chi_A$ iff $\forall y \leq |\sigma|$: $\sigma(y) = \chi_A(y)$
iff $\forall y \leq |\sigma|$: $(\underline{\sigma(y) = 1, y \in A}) \lor (\underline{\sigma(y) = 0, y \notin A})$
 Γ_n
Since Σ_{n+1} is closed under bounded \forall , the claim follows.
Then $B \in \Sigma_{n+1}$.
Note: A -c.e = \overline{A} -c.e. yields the second equivalence in 1.

Proof

2. Show $\emptyset^{(n)}$ is Σ_n -complete for n > 0 by induction.

Base case: For n = 1, $\emptyset' = K$ is Σ_1 -complete.

Induction step: Let $B \subseteq \mathbb{N}$. Then

$$B \in \Sigma_{n+1}$$
 iff B is c.e. in some Σ_n set by 1.
iff B is c.e. in $\emptyset^{(n)}$ by induction assumption
iff $B \leq_m \emptyset^{(n+1)}$ by the Jump Theorem 2.

Hence $\emptyset^{(n+1)}$ is Σ_{n+1} -complete.

3. follows from 1. and 2.

4.
$$B \in \Delta_{n+1}$$
 iff $B, \overline{B} \in \Sigma_{n+1}$
iff B, \overline{B} are $\emptyset^{(n)}$ -c.e. by 3.
iff B is $\emptyset^{(n)}$ -computable by Complementation Thm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00