Approximations and the Friedberg Splitting Theorem

Peter Mayr

Computability Theory, March 12, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Computable approximation of sets

Definition

- $\varphi_{e,s}(x) := y$ if [e, x, y < s] and the DTM M_e computes $\varphi_e(x) = y$ in $\langle s$ steps.
- If such y exists, say φ_{e,s}(x) converges and write φ_{e,s}(x) ↓; else φ_{e,s}(x) diverges and φ_{e,s}(x) ↑.

A D N A 目 N A E N A E N A B N A C N

$$\blacktriangleright W_{e,s} := \operatorname{domain} \varphi_{e,s}$$

Note

Lemma

The following predicates are computable:

1.
$$\{(e, x, y, s) : \varphi_{e}(x) = y\}$$

2. $\{(e, x, s) : \varphi_{e}(x) \downarrow\}$
3. $W_{e,s}$

Proof.

Compute $\varphi_e(x)$ until some output is found or s steps are completed.

A property of c.e. sets W_e is **dynamic** if it is described in terms of $W_{e,s}$ (time dependent). So far most properties were **static** (e.g. lattice theoretic).

.

A static result with dynamic proof

Friedberg Splitting Theorem

Let $A \subseteq \mathbb{N}$ be c.e., noncomputable. Then there exist c.e. B_0, B_1 such that

 $A = B_0 \cup B_1, B_0 \cap B_1 = \emptyset$, and B_0, B_1 are computably inseparable.

In particular B_0, B_1 are noncomputable.

Proof.

Enumerate A and put elements into B_0, B_1 to meet requirements

$$R_{e,i}: \qquad \qquad W_e \cap B_i \neq \emptyset$$

for $e \in \mathbb{N}$, $i \in \{0, 1\}$ if possible (Then B_i cannot be computable). At each stage try to satisfy $R_{e,i}$ of **highest priority** (smallest e) that does not hold yet.

Let $f : \mathbb{N} \to \mathbb{N}$ be injective, computable with $f(\mathbb{N}) = A$. **Stage s=0:** $B_{0,0} := B_{1,0} := \emptyset$ **Stage s+1:** Let e < s and $i \in \{0, 1\}$ be minimal such that ho. ded seavely $f(s) \in W_{e,s}$ and $W_{e,s} \cap B_{i,s} = \emptyset$. Computed le by periorstemme uitness to satisfy $R_{e,i}$ in of satisfied yet Set $B_{i,s+1} := B_{i,s} \cup \{ f(s) \}$ and $B_{1-i,s+1} := B_{1-i,s}$ other set stays the same Then $R_{e,i}$ received attention and remains satisfied forever If no such e, i exist, put f(s) into $B_{0,s+1}$.

By construction

$$B_i:=igcup_{s\in\mathbb{N}}B_{i,s},\ \ i\in\{0,1\}$$

(日) (日) (日) (日) (日) (日) (日) (日)

is c.e., B_0, B_1 are disjoint and $B_0 \cup B_1 = A$.

It remains to show: B_0, B_1 are computably inseparable. Seeking a contradiction, suppose there is a computable C with

$$\underline{B_0\subseteq C},\ B_1\cap C=\emptyset.$$

For $C = W_e$, $\overline{C} = W_d$,

$$\mathcal{Q}_{d,s}: \ \underline{W_{d,s} \cap B_{0,s}} = \emptyset \text{ and } W_{e,s} \cap B_{1,s} = \emptyset \ \forall s \in \mathbb{N}.$$

Still $R_{d,0}$ and $R_{e,1}$ never received attention. Why not?

- ► e_s in the construction above takes each value at most twice. Hence $\exists N \ \forall s > N : e_s > \underline{e}, \underline{d}$.
- $f(s) \notin W_{d,s}$ for s > N because else we'd put $f(s) \in B_{0,s+1}$ and $R_{d,0}$ received attention instead of $R_{e_s,i}$ at stage s + 1.

• Similar
$$f(s) \notin W_{e,s}$$
 for any $s > N$.

Hence

$$\underbrace{f(s) \notin W_{e,s} \cup W_{d,s} \quad \forall s > N}_{(\dagger)}$$

(日)(1)

Claim: $\bar{A} = \bigcup_{s>N} (W_{e,s} \cup W_{d,s}) \setminus \{f(0), \dots, f(s-1)\}$ $\triangleright \supseteq$: Clearly $f(0), \dots, f(N)$ is not in the set on the right.

▶ ⊇: Clearly f(0), ..., f(N) is not in the set on the right. Suppose $\underline{f(t)} \in W_{e,s} \cup W_{d,s}$ for $t \ge s > N$. Then $f(t) \in W_{e,t} \cup W_{d,t}$ contradicts (†).

(日)(1)

► ⊆: Since $W_e \cup W_d = \mathbb{N}$, every $x \in \overline{A}$ occurs in some $(W_{e,s} \cup W_{d,s}) \setminus \{f(0), \dots, f(s-1)\}$ for s > N.

By this claim \overline{A} is c.e. contradicting the assumption that A is not computable.

Thus there are no e, d as above and B_0, B_1 are computably inseparable.

Note

The proof is based on a simultanous enumeration of all c.e. sets to construct $B_{i,s}$. By (†) f(s) appears in A "earlier" than in W_e or W_d .