Many-one completeness for arithmetical hierarchy

Peter Mayr

Computability Theory, March 1, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What are the hardest $\sum_{n=1}^{0}$ -problems?

To simplify notation we only consider subsets of $\ensuremath{\mathbb{N}}.$

Recall

▶ For $A, B \subseteq \mathbb{N}$, A is **many-one reducible** to B (short $A \leq_m B$) if there exists a total computable function $f : \mathbb{N} \to \mathbb{N}$:

 $\forall x \in \mathbb{N} : x \in A \text{ iff } f(x) \in B.$

A is c.e. iff A ≤_m AP (HW 4). Hence the acceptance problem is "hardest" among Σ⁰₁-sets.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Question

Can this be generalized to higher levels of the arithmetical hierarchy?

Closure under many-one reductions

Lemma

If $A \leq_m B$ and B is Σ_n^0, Π_n^0 , respectively, then A is Σ_n^0, Π_n^0 , respectively.

Proof.

Assume $f: A \to B$ is a many-one reduction and B(z) is Σ_n^0 . Then

$$A(x)\equiv B(f(x))$$

is Σ_n^0 since Σ_n^0 is closed under substitution by total computable functions.

Σ_n^0 -complete sets

Definition $C \subseteq \mathbb{N}$ is Σ_n^0 -complete if 1. C is Σ_n^0 and 2. for every Σ_n^0 -set A: $A \leq_m C$.

Theorem

For each $n \ge 1$

- 1. Σ_n^0 -complete sets exist;
- 2. no Σ_n^0 -complete set is Π_n^0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Universal \Rightarrow complete

Proof.

1. Let $U_n(e, x)$ be a universal $\sum_{n=1}^{0}$ -predicate. Then

$$C_n := \{2^e 3^x : U_n(e, x)\}$$

is Σ_n^0 -complete since for each $\Sigma_n^0 A$, we have $e \in \mathbb{N}$:

$$A(x)$$
 iff $U_n(e, x)$ iff $2^e 3^x \in C_n$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2. Recall: $K_n(x) = U_n(x, x)$ is Σ_n^0 , not Π_n^0 . Let C be Σ_n^0 -complete. Then $K_n \leq_m C$ and C cannot be Π_n^0 either. Further complete examples 1

$$T = \{e : \varphi_e \text{ is total}\} \text{ is } \Pi_2^0\text{-complete.}$$

Proof.

Recall T is Π_2^0 . Let R be computable and

$$A(x) \equiv \forall y \exists z \ R(x, y, z) \tag{Π_2^0}$$

• Define $\psi(x, y) := \mu z R(x, y, z)$.

• By the S_n^m -Theorem for m = n = 1, we have a computable $h := S_1^1$ such that

$$\psi(x,y) = \varphi_{h(x)}(y)$$
 for all x, y .

► Then
$$x \in A$$
 iff $\forall y \ \varphi_{h(x)}(y) \downarrow$
iff $\varphi_{h(x)}$ is total
iff $h(x) \in T$.

Hence the S^m_n-Theorem yields a many-one reduction h from A to T.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Further complete examples 2, 3 The diagonal halting problem $K = \{x : \varphi_x(x) \downarrow\}$ is Σ_1^0 -complete.

Proof

Let R be computable and

$$A(x) \equiv \exists y \ R(x, y) \tag{Σ_1^0}$$

▶ Define ψ(x, z) := µy R(x, y) (independent of z!).
▶ By the S^m_n-Theorem, we have a computable h such that

$$\psi(x,z) = \varphi_{h(x)}(z)$$
 for all x, z .

► Then
$$x \in A$$
 iff $\psi(x, z) \downarrow$
iff $\varphi_{h(x)}(h(x)) \downarrow$
iff $h(x) \in K$.

 $\mathcal{K}_n := \{x : U_n(x,x)\}$ is Σ_n^0 -complete for $n \ge 1$.