Math 6010 - Assignment 7

Due March 8, 2019

- (1) Show that Σ_n^0 for $n \in \mathbb{N}$ is closed under \wedge, \vee and bounded quantifiers.
- (2) Prove that the following are equivalent for $A \subseteq \mathbb{N}$:
 - (a) A is recursively enumerable.
 - (b) A is the domain of some partial recursive function.
 - (c) A is in Σ_1^0 .
 - (d) A is the range of a partial recursive function $f: \mathbb{N} \to \mathbb{N}$.
- (3) Prove that a partial function is recursive iff its graph is recursively enumerable.
- (4) For $n \in \mathbb{N}$ let $\Delta_n^0 := \Sigma_n^0 \cap \Pi_n^0$. Show that

$$\Sigma^0_n \cup \Pi^0_n \subsetneq \Delta^0_{n+1}$$

for $n \ge 1$. What about n = 0?

Hint: To show that the containment is proper let P be Σ^0_n but not Π^0_n and consider

$$Q(x,z) := (P(x) \land z = 0) \lor (\neg P(x) \land z = 1).$$