## Math 3140-Assignment 13

## Due December 3, 2021

(1) Show every finite abelian group is the direct product of its Sylow subgroups.
(2) Let $n \in \mathbb{N}$ be odd.
(a) Give a Sylow 2-subgroup of $D_{2 n}$. What is it isomorphic to? How many are there?
(b) Let $p$ an odd prime. What are the Sylow $p$-subgroups of $D_{2 n}$ ?
(c) Are any of the Sylow subgroups of $D_{2 n}$ normal?
(3) For every prime $p$ give a Sylow $p$-subgroup of $A_{5}$. Can you determine how many there are for each $p$ ? Are any of them normal?

Hint: Look at Exercises 11.5-6 for the number of permutations of a certain cycle structure.
(4) How many groups of size 21 are there up to isomorphism? What do they look like?

How many groups of size 33? (cf. Example 5.4.12 of [1]).

## References

[1] Frederick M. Goodman. Algebra: abstract and concrete. SemiSimple Press, edition 2.6, 2015. Available from http://www.math. uiowa.edu/~goodman

