Math 3140-Assignment 12

Due November 17, 2021

(1) (a) How many distinct necklaces can be made with 2 red, 2 blue and 2 green beads?
(b) How many distinct necklaces can be made with 6 beads of (at most) 3 different colors?
(2) Read pages 220-221 in [1] on the rotational symmetries of the cube:
(a) How many are there?
(b) Number the faces of the cube $1, \ldots, 6$. What are the cycle structures for the rotational symmetries on $1, \ldots, 6$? How often does each cycle structure appear in this group?
(3) How many colorings are there of the faces of a cube in 2 colors up to rotational symmetry? (Two colorings are considered equivalent when one can be obtained from the other by rotating the cube.)
Hint: exercise (2)
The next 3 problems are for defining and constructing the alternating group A_{n} :
(4) Let $n \in \mathbb{N}$ and $f \in S_{n}$. Define the sign of f as

$$
\operatorname{sgn}(f):=\frac{\prod_{1 \leq i<j \leq n}(f(j)-f(i))}{\prod_{1 \leq i<j \leq n}(j-i)} .
$$

Show that sgn : $S_{n} \rightarrow(\{-1,1\}, \cdot)$ is a homomorphism. Why is the image of sgn in $\{-1,1\}$?

Permutations f with $\operatorname{sgn} f=1$ are called even; if $\operatorname{sgn} f=-1$, then f is called odd.
(5) Let $n \in \mathbb{N}$. Recall that a transposition is a cycle of length 2 in S_{n}.
(a) Show that every cycle ($a_{1} a_{2} \ldots a_{k}$) of length k in S_{n} can be written as a product of transpositions. How many transpositions are needed? Hint: see Problem 5c on assignment 1.
(b) Using that every permutation is a product of disjoint cycles, conclude that every permutation is a product of transpositions.
(6) Prove:
(a) $\operatorname{sgn}(f)=-1$ for any transposition $f \in S_{n}$.

Hint: Compute $\operatorname{sgn}((12))$. Then use that every transposition $f \in S_{n}$ is conjugate to (12) and that sgn is a homomorphism to get $\operatorname{sgn}(f)$.
(b) kersgn $=\left\{f \in S_{n}: f\right.$ is a product of an even number of transpositions $\}$.

This is why permutation with sign 1 are called even.
$A_{n}:=$ ker sgn is called the alternating group on n letters.
(7) Show every finite abelian group is the direct product of its Sylow subgroups.

References

[1] Frederick M. Goodman. Algebra: abstract and concrete. SemiSimple Press, edition 2.6, 2015. Available from http://www.math.uiowa.edu/~goodman

