Math 3140 - Assignment 11

Due November 10, 2021

- (1) Which of the following are group actions? Check the properties. Are they transitive?
 - (a) $A * x := A \cdot x$ for $A \in GL(n, \mathbb{R}), x \in \mathbb{R}^n$
 - (b) G on X := G/H for a subgroup H of G by g * xH := gxH
- (2) For (G, \cdot) acting on a set X and $x, y \in X$, define $x \sim y$ if $\exists g \in G : y = gx$. Show:
 - (a) \sim is an equivalence relation on X.
 - (b) The orbit $Gx := \{gx : g \in G\}$ is the equivalence class of x with respect to \sim .
- (3) Show the stabilizer $\operatorname{Stab}_G(x) := \{g \in G : gx = x\}$ is a subgroup of G.
- (4) (a) How many distinct necklaces can be made with 2 red, 2 blue and 2 green beads?
 - (b) How many distinct necklaces can be made with 6 beads of (at most) 3 different colors?
- (5) When are two elements of S_n conjugate?
 - (a) Show that for any k-cycle $(a_1, a_2, \ldots, a_k) \in S_n$ and any $f \in S_n$, we have

 $f(a_1, a_2, \dots, a_k)f^{-1} = (f(a_1), f(a_2), \dots, f(a_k)).$

(b) For any two k-cycles $(a_1, a_2, \ldots, a_k), (b_1, b_2, \ldots, b_k) \in S_n$ explicitly give $f \in S_n$, such that

$$f(a_1, a_2, \dots, a_k)f^{-1} = (b_1, b_2, \dots, b_k)$$

The cycle structure of a permutation g is the length of the cycles in the cycle decomposition of g (counted with multiplicity). For example $g = (1 \ 2 \ 3)(4 \ 5)(6 \ 7)$ has cycle structure 3, 2, 2.

Deduce that two permutations $g, h \in S_n$ are conjugate iff they have the same cycle structure.

- (6) (a) How many different conjugacy classes are there in S_4 ?
 - (b) For $g = (1 \ 2)(3 \ 4)$ determine $C_{S_4}(g)$, the centralizer of g in S_4 .
 - (c) How many elements in S_6 are conjugate to $(1 \ 2)(3 \ 4)$?