Math 3140-Assignment 11

Due November 10, 2021
(1) Which of the following are group actions? Check the properties. Are they transitive?
(a) $A * x:=A \cdot x$ for $A \in \mathrm{GL}(n, \mathbb{R}), x \in R^{n}$
(b) G on $X:=G / H$ for a subgroup H of G by $g * x H:=g x H$
(2) For (G, \cdot) acting on a set X and $x, y \in X$, define $x \sim y$ if $\exists g \in G: y=g x$. Show:
(a) \sim is an equivalence relation on X.
(b) The orbit $G x:=\{g x: g \in G\}$ is the equivalence class of x with respect to \sim.
(3) Show the stabilizer $\operatorname{Stab}_{G}(x):=\{g \in G: g x=x\}$ is a subgroup of G.
(4) (a) How many distinct necklaces can be made with 2 red, 2 blue and 2 green beads?
(b) How many distinct necklaces can be made with 6 beads of (at most) 3 different colors?
(5) When are two elements of S_{n} conjugate?
(a) Show that for any k-cycle $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in S_{n}$ and any $f \in S_{n}$, we have

$$
f\left(a_{1}, a_{2}, \ldots, a_{k}\right) f^{-1}=\left(f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{k}\right)\right) .
$$

(b) For any two k-cycles $\left(a_{1}, a_{2}, \ldots, a_{k}\right),\left(b_{1}, b_{2}, \ldots, b_{k}\right) \in S_{n}$ explicitly give $f \in S_{n}$, such that

$$
f\left(a_{1}, a_{2}, \ldots, a_{k}\right) f^{-1}=\left(b_{1}, b_{2}, \ldots, b_{k}\right) .
$$

The cycle structure of a permutation g is the length of the cycles in the cycle decomposition of g (counted with multiplicity). For example $g=\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)(45)(67)$ has cycle structure $3,2,2$.

Deduce that two permutations $g, h \in S_{n}$ are conjugate iff they have the same cycle structure.
(6) (a) How many different conjugacy classes are there in S_{4} ?
(b) For $g=(12)(34)$ determine $C_{S_{4}}(g)$, the centralizer of g in S_{4}.
(c) How many elements in S_{6} are conjugate to (12)(34)?

