Math 3140 - Assignment 9

Due October 27, 2021

- (1) Are the following groups isomorphic? For (a), (b) do not use the Fundamental Theorem of Finite Abelian Groups but count the elements of fixed order.
 - (a) \mathbb{Z}_8 and $\mathbb{Z}_4 \times \mathbb{Z}_2$
 - (b) $\mathbb{Z}_4 \times \mathbb{Z}_4$ and $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
 - (c) $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_6$ and $\mathbb{Z}_{60} \times \mathbb{Z}_6 \times \mathbb{Z}_2$
 - (d) $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_6$ and $\mathbb{Z}_{15} \times \mathbb{Z}_4 \times \mathbb{Z}_{12}$
- (2) How many abelian groups up to isomorphism are there of order(a) 6,
 - (b) 15,
 - (c) 30,
 - (d) pq for distinct primes p, q
 - (e) n where n is a product of pairwise distinct primes?
- (3) Find all abelian groups of order 180 up to isomorphism.
- (4) How many abelian groups are there of order 3^5 up to isomorphism? How many of order p^5 where p is prime?
- (5) The exponent of a group G is the smallest positive integer n such that xⁿ = 1 for all x ∈ G. What is the exponent of
 (a) S₃,
 - (a) D_3 , (b) D_8 ,
 - (c) $\mathbb{Z}_9 \times Z_3$?

How many abelian groups up to isomorphism are there of order 16 and exponent 4?

(6) Let (A, +) be an abelian group. The set

 $A_{tor} := \{ x \in A : x \text{ has finite order} \}$

of elements of finite order is called the *torsion part* of A.

Show that A_{tor} is a subgroup of (A, +).

- (7) Let $A = \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k} \times \mathbb{Z}^r$.
 - (a) What is the torsion part of A?
 - (b) What is A/A_{tor} isomorphic to?