Math 3140 - Assignment 7

Due October 13, 2021
(1) For groups $\left(G, \cdot{ }_{G}\right)$ and $\left(H, \cdot{ }_{H}\right)$ show that the direct product

$$
G \times H:=\{(g, h): g \in G, h \in H\}
$$

under the operation

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right):=\left(g_{1} \cdot{ }_{G} g_{1}, h_{1} \cdot{ }_{H} h_{2}\right)
$$

for $g_{1}, g_{2} \in G, h_{1}, h_{2} \in H$ is a group.
(2) Let G, H be groups and $g \in G, h \in H$. What is the order of $(g, h) \in G \times H$ in terms of the orders of g and of h ?
Hint: Consider infinite and finite orders.
(3) Let $m, n \in \mathbb{N}$. Give a necessary and sufficient condition for $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ to be cyclic.
Hint: Use the previous exercise.
(4) What are the conjugacy classes in S_{3}, i.e., which elements are conjugate to each other?
(5) For a subgroup H of G and $a \in G$, let $H a:=\{h a: h \in H\}$ denote a right coset of H.

Show that H is normal in G iff $a H=H a$ for all $a \in G$. (The latter condition says that every every left coset of H is also a right coset.)
(6) Show that every subgroup H of index 2 in a group G is normal. Hint: Use the previous exercise.
(7) Determine the kernels and images of the following homomorphisms. Which ones are injective, surjective?
(a) $\varphi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}, x \mapsto 4 x$
(b) $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{cc}1 & -3 \\ -2 & 6\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$
for the additive group \mathbb{R}^{2}.
(c) $h: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}, x \mapsto x^{2}$, where \mathbb{C}^{*} denotes the multiplicative group of the complex numbers without 0 .

