Math 3140 - Assignment 6

Due October 6, 2021
(1) For the following subgroups H of G, find all the left cosets of H in G. Give one representative for each left coset. How many are there?
(a) $G=\mathbb{R}^{2}$ under addition, $H=\{(x, 0): x \in \mathbb{R}\}$
(b) $G=\langle a\rangle$ of order $12, H=\left\langle a^{4}\right\rangle$
(c) $G=\mathbb{R}^{*}$ under multiplication, $H=\mathbb{R}^{+}$the subgroup of positive reals
(2) Show that if the order of a group G is a prime p, then it is isomorphic to $\left(\mathbb{Z}_{p},+\right)$.
(3) Let G be a nontrivial group that has no proper, nontrivial subgroups (i.e. 1 and G are the only subgroups of G). Show that $|G|$ is prime.
Hint: Do not assume at the outset that G is finite.
(4) For any integer $n>1$, Euler's ϕ-function $\phi(n)$ yields the number of positive integers less than n that are coprime to n. Prove:
Euler's Theorem. If a is coprime to n, then $a^{\phi(n)} \equiv 1 \bmod n$.
(5) Let G be a finite group with subgroups $H \leq K \leq G$. Show that

$$
|G: H|=|G: K| \cdot|K: H| .
$$

