Math 3140 - Assignment 2

Due September 10, 2021

(1) Let G be a group, let
$$g, h \in G$$
. Show that
 $(gh)^{-1} = h^{-1}g^{-1}$.

(2) Let
$$n \in \mathbb{N}, a, a', b, b' \in \mathbb{Z}$$
 such that $a \equiv_n a', b \equiv_n b'$. Show

$$a+b\equiv_n a'+b'.$$

(3) Use the Euclidean algorithm to find gcd(a, b) and Bezout's coefficients $u, v \in \mathbb{Z}$ such that

$$u \cdot a + v \cdot b = \gcd(a, b)$$

for a = 51, b = 36.

- (4) Compute the following multiplicative inverses in \mathbb{Z}_n if possible: (a) $[12]^{-1}$ in \mathbb{Z}_{35} (b) $[14]^{-1}$ in \mathbb{Z}_{35}

Hint: Use the Euclidean Algorithm to compute Bezout's coefficients.

- (5) Let $n \in \mathbb{N}, n > 1$. We call $[a] \in \mathbb{Z}_n$ a zero-divisor if there exists some nonzero $[b] \in \mathbb{Z}_n$ such that $[a] \cdot [b] = [0]$.
 - (a) What are the zero divisors in \mathbb{Z}_6 ?
 - (b) Show that [a] is a zero divisor in \mathbb{Z}_n if $gcd(a, n) \neq 1$.
 - (c) True or false? Every element in \mathbb{Z}_n is either invertible or a zero-divisor.
- (6) For $n \in \mathbb{N}$, let \mathbb{Z}_n^* denote the set of elements in \mathbb{Z}_n that have a multiplicative inverse. Show that (\mathbb{Z}_n^*, \cdot) is a group.

Hint: Don't forget to show that \cdot is an operation on \mathbb{Z}_n^* , i.e., that the product of invertible elements is invertible again.