Math 3140 - Assignment 12

Due November 16, 2016

- (1) Read pages 220-221 in [1] on the rotational symmetries of the cube:
 - (a) How many are there?
 - (b) Number the faces of the cube 1,...,6. What are the cycle structures for the rotational symmetries on 1,...,6? How often does each cycle structure appear in this group?
- (2) How many colorings are there of the faces of a cube in 2 colors up to rotational symmetry? (Two colorings are considered equivalent when one can be obtained from the other by rotating the cube.)

Hint: exercise (1)

- (3) (a) For $g = (1 \ 2 \ 3 \ 4)(5 \ 6)$ determine $C_{S_6}(g)$, the centralizer of g in S_6 .
 - (b) How many elements in S_6 are conjugate to $(1\ 2\ 3\ 4)(5\ 6)?$
- (4) How many elements in S_6 are a product of 2 disjoint cycles of length 3 each?

Hint: What is the size of the centralizer of such an element?

(5) Assume that a permutation g in S_n has a decomposition into m_1 cycles of length k_1 , m_2 cycles of length k_2 , ..., and m_ℓ cycles of length k_ℓ where $k_1 > k_2 > \cdots > k_\ell$ and m_1, \ldots, m_ℓ are positive integers.

Determine the size of the conjugacy class of g in S_n .

References

[1] Frederick M. Goodman. Algebra: abstract and concrete. SemiSimple Press, edition 2.6, 2015. Available from http://www.math.uiowa.edu/~goodman