Math 3140 - Assignment 9

Due October 26, 2016

This assignment is a set of practice problems for the midterm exam on October 26.

- (1) An *automorphism* of a group G is a bijective homomorphism from G to G. Let Aut(G) denote the set of all automorphisms of G.
 - (a) Determine the automorphisms of \mathbb{Z}_4 .
 - (b) Show that Aut(G) is a group (under composition).
- (2) Recall that for every $g \in G$, the map $c_g \colon G \to G, x \mapsto gxg^{-1}$ is an automorphism of G.

(a) Show that $\varphi \colon G \to \operatorname{Aut}(G), \ g \mapsto c_g$, is a homomorphism. (b) Show ker $\varphi = Z(G)$.

In general φ is not surjective. The image $\varphi(G)$ is called the group of *inner automorphisms*, denoted Inn(G). Conclude that $G/Z(G) \cong \text{Inn}(G)$.

- (3) Show that a subgroup N of G is normal iff it is a union of conjugacy classes in G.
- (4) Use Problem 7.1 and the previous problem to find all normal subgroups of S_3 .
 - (a) What is $Z(S_3), S'_3$?
 - (b) What is S_3/S'_3 isomorphic to?
 - (c) How many inner automorphisms does S_3 have?
- (5) (a) Is \mathbb{Z}_8 isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$? (b) Is $\mathbb{Z}_4 \times \mathbb{Z}_4$ isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$?

Hint: Count the elements of fixed order.

(6) Let (A, +) be an abelian group, $a_1, \ldots, a_n \in A$. Show that

 $\langle a_1,\ldots,a_n\rangle = \{z_1a_1+\cdots+z_na_n : z_1,\ldots,z_n \in \mathbb{Z}\}.$

Hint: There are 2 inclusions to show. In particular, you need to prove that the set on the right hand side is a subgroup.