Math 3140 - Assignment 7

Due October 12, 2016

- (1) What are the conjugacy classes in S_3 , i.e., which elements are conjugate?
- (2) Show that for every group G conjugacy of elements is an equivalence relation.
- (3) Let $n \in \mathbb{N}$ and $f \in S_n$. Define the sign of f as

$$\operatorname{sgn}(f) := \frac{\prod_{1 \le i < j \le n} (f(j) - f(i))}{\prod_{1 \le i < j \le n} (j - i)}.$$

Show that sgn: $S_n \to (\{-1, 1\}, \cdot)$ is a homomorphism. Why is the image of sgn in $\{-1, 1\}$?

Permutations f with $\operatorname{sgn} f = 1$ are called *even*; if $\operatorname{sgn} f = -1$, then f is called *odd*.

- (4) Recall that a *transposition* is a cycle of length 2 in S_n for any $n \in \mathbb{N}$, and that every permutation is a product of transpositions. Prove:
 - (a) $\operatorname{sgn}(f) = -1$ for any transposition $f \in S_n$
 - (b) ker sgn = { $f \in S_n$: f is a product of an even number of transpositions}
 - $A_n := \text{ker sgn}$ is called the *alternating group* on *n* letters.
- (5) For $n \in \mathbb{N}$ and I the $n \times n$ identity matrix show that

$$Z(\operatorname{GL}(n,\mathbb{R})) = \{ aI : a \in \mathbb{R} \setminus \{0\} \}$$

Hint: Consider products of central elements with the elementary matrices E_{ij} that are 1 in position (i, j) and 0 everywhere else.