Math 3140 - Assignment 6

Due October 5, 2016

(1) For a subgroup H of (G, \cdot) , define a relation \sim on G by $a \sim b$ if $a^{-1}b \in H$.

Show that \sim is an equivalence relation.

(2) Show that if the order of a group G is a prime p, then it is isomorphic to $(\mathbb{Z}_p, +)$.

Hint: Use Lagrange's Theorem to find all subgroups of G and deduce that G is necessarily cyclic.

(3) For a subgroup H of G and $a \in G$, let $Ha := \{ha : h \in H\}$ denote a *right coset*.

Show that H is normal in G iff aH = Ha for all $a \in G$. (The latter condition says that every every left coset of H is also a right coset.)

- (4) Show that every subgroup H of index 2 in a group G is normal. Hint: Use the previous exercise.
- (5) Determine the kernels and images of the following homomorphisms. Which ones are injective, surjective?

 $\begin{bmatrix} x \\ y \end{bmatrix}$

(a)
$$\varphi \colon \mathbb{Z}_6 \to \mathbb{Z}_6, \ x \mapsto 4x$$

(b) $\psi \colon \mathbb{R}^2 \to \mathbb{R}^2, \ \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix} \cdot \begin{bmatrix} x \\ -2 & 6 \end{bmatrix}$

for the additive group \mathbb{R}^2 .