Math 3140 - Assignment 5

Due September 28, 2016

(1) Find a subgroup H of S_4 with |H| = 4 and H not isomorphic to $(\mathbb{Z}_4, +)$.

Hint: Consider the symmetries of a rectangle. Why are they not isomorphic to $(\mathbb{Z}_4, +)$?

- (2) Let G be a group, and $a \in G$ of finite order, i.e. $o(a) = |\langle a \rangle|$ is finite. Show that o(a) is the smallest $n \in \mathbb{N}$ such that $a^n = 1$. Hint: Show for this n that $1, a, a^2, \ldots, a^{n-1}$ are all distinct.
- (3) Let $\varphi: G \to H$ be a group homomorphism and $B \leq H$ a subgroup of H. Show that the preimage

$$\varphi^{-1}(B) := \{ g \in G \colon \varphi(g) \in B \}$$

is a subgroup of G.

- (4) For $n \in \mathbb{N}$, let (\mathbb{Z}_n^*, \cdot) denote the group of invertible elements in \mathbb{Z}_n with multiplication.
 - (a) Show that \mathbb{Z}_7^* is cyclic. Which elements are generators?
 - (b) What are the orders of the elements in \mathbb{Z}_7^* ?
 - (c) Which other group is (\mathbb{Z}_7^*, \cdot) isomorphic to? Give the isomorphism.