Math 3140 - Assignment 4

Due September 21, 2016

Problems 1-3a are reviewing material for the 1st midterm.

- (1) Compute the multiplicative inverses of the following if they exist:
 - (a) $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ in $\operatorname{GL}(2, \mathbb{R})$
 - (b) $b = (2 \ 3 \ 4)(1 \ 2 \ 3)$ in S_4 (give a decomposition in disjoint cycles)
 - (c) c = [9] in \mathbb{Z}_{25}
- (2) [1, Exercise 1.5.6] A permutation that is a cycle of length 2 is called a *transposition*.

Show that any cycle $(a_1 \ a_2 \ \dots a_k)$ of length k can be written as a product of transpositions. Conclude that any permutation is a product of transpositions.

Hint: For the first part look at problem 5c of assignment 1 to discover the right pattern.

- (3) Which of the following are subgroups of S_4 ?
 - (a) $A = \{(), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$
 - (b) $B = \{ f \in S_4 : f(2) > f(1) \}$
- (4) Let A, B be subgroups of a group (G, \cdot) . Show that $A \cap B$ is a subgroup as well.
- (5) Let $\varphi \colon G \to H$ be a homomorphism between the group (G, \cdot) with identity 1_G and the group (H, *) with identity 1_H . Show: (a) $\varphi(1_G) = 1_H$
 - Hint: Start by evaluating $\varphi(1_G \cdot 1_G)$ in two ways.
 - (b) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$. Hint: Use (a).

References

 Frederick M. Goodman. Algebra: abstract and concrete. SemiSimple Press, edition 2.6, 2015. Available from http://www.math.uiowa.edu/~goodman