Math 3140 - Assignment 2

Due September 7, 2016

- (1) Find the cycle decomposition for the perfect in-shuffle for 4, 6, 12 cards, respectively. What are their orders?
- (2) Let $n \in \mathbb{N}, a, a', b, b' \in \mathbb{Z}$ such that $a \equiv_n a', b \equiv_n b'$. Show

$$a+b\equiv_n a'+b',$$

$$a \cdot b \equiv_n a' \cdot b'.$$

(3) Use the Euclidean algorithm to find gcd(a, b) and Bezout's coefficients $u, v \in \mathbb{Z}$ such that

$$u \cdot a + v \cdot b = \gcd(a, b)$$

for

(a)
$$a = 29, b = 13,$$

- (b) a = 51, b = 36.
- (4) Compute the following multiplicative inverses in Z_n if possible:
 (a) [12]⁻¹ in Z₃₅

(b) $[14]^{-1}$ in \mathbb{Z}_{35}

Hint: Use the Euclidean Algorithm to compute Bezout's coefficients.

- (5) Let $n \in \mathbb{N}, n > 1$. We call $[a] \in \mathbb{Z}_n$ a zero-divisor if there exists some nonzero $[b] \in \mathbb{Z}_n$ such that $[a] \cdot [b] = [0]$.
 - (a) What are the zero divisors in \mathbb{Z}_6 ?
 - (b) Show that [a] is a zero divisor in \mathbb{Z}_n if $gcd(a, n) \neq 1$.
 - (c) True or false? Every element in \mathbb{Z}_n is either invertible or a zero-divisor.