Math 3140 - Basic definitions of groups

Def 1. (G, \cdot) is a group if $G \neq \emptyset$ and \cdot is a binary operation on G that is

- (1) associative,
- (2) has an identity 1,
- (3) each element $g \in G$ has an inverse g^{-1} in G.

Def 2. *H* is a subgroup of a group (G, \cdot) (denoted $H \leq G$) if $H \neq \emptyset$ and $\forall x, y \in H$:

(1) $xy \in H$, (2) $x^{-1} \in H$.

Def 3. Elements x, y are conjugate in G if $\exists g \in G : gxg^{-1} = y$.

Def 4. A subgroup H of is normal in G (denoted $H \leq G$) if

$$\forall g \in G \colon gHg^{-1} = H.$$

Def 5. $\varphi: G \to H$ is a homomorphism from (G, \cdot) to (H, *) if

$$\forall x, y \in G \colon \varphi(x \cdot y) = \varphi(x) \ast \varphi(y)$$

 $\ker \varphi := \{ x \in G : \varphi(x) = 1_H \} \text{ is the kernel of } \varphi.$ $\varphi(G) \text{ is the image of } \varphi.$

Def 6. For $H \leq G$ and $x \in G$, the **left coset** of x with respect to H is

$$xH := \{xh : h \in H\}.$$

For $N \leq G$ the quotient group G/N is the set of cosets of N in G with multiplication

$$xN \cdot yN := xyN$$
 for $x, y \in G$.

Def 7. The direct product of groups G, H is $G \times H$ with multiplication

$$(g_1, h_1) \cdot (g_2, h_2) := (g_1g_2, h_1h_2)$$
 for $g_1, g_2 \in G, h_1, h_2 \in H$.