Math 3130 - Assignment 8

Due March 11, 2016

- (64) Let U, V, W be vector spaces, and let $f: U \to V$ and $q: V \to W$ be linear mappings. (a) Show that the composition mapping $h: U \to W, \mathbf{u} \mapsto g(f(\mathbf{u}))$ is linear.
 - (b) Does it make sense to ask whether $k: V \to V, \mathbf{u} \mapsto f(g(\mathbf{v}))$ is linear?
- (65) Let U, V be vector spaces and $T: U \to V$ be a linear mapping. Show that $T(\mathbf{0}) = \mathbf{0}$. Hint: Write down $T(\mathbf{0} + \mathbf{0})$ in two different ways.
- (66) Let U, V be vector spaces and $T: U \to V$ be a linear mapping. Show that the range T(U) is a subspace of V.
- (67) Let $V = \{f : \mathbb{R} \to \mathbb{R}\}$ be a vector space of functions. Is the set $\{\cos t, \sin t, \sin(t + \frac{\pi}{4})\}$ linearly independent?

Hint: Use a formula for expanding $\sin(\alpha + \beta)$.

- (68) Let $B = \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $C = \begin{pmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ be bases of \mathbb{R}^2 . (a) Find the standard matrix for $f : \mathbb{R}^2 \to \mathbb{R}^2$, $[\mathbf{u}]_B \mapsto \mathbf{u}$. (b) Find the standard matrix for $g : \mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{u} \mapsto [\mathbf{u}]_C$. (c) Find the standard matrix for $h : \mathbb{R}^2 \to \mathbb{R}^2$, $[\mathbf{u}]_B \mapsto [\mathbf{u}]_C$. Hint: $h(\mathbf{x}) = g(f(\mathbf{x}))$. (69) Determine the standard matrix for the reflection T of \mathbb{R}^2 at the line 3x + y = 0 as
- follows:
 - (a) Find a basis B of \mathbb{R}^2 whose vectors are easy to reflect.
 - (b) Give the standard matrix for the reflection relative to the coordinate system determined by B.
 - (c) Use the change of coordinate matrix P_B to compute the standard matrix with respect to the standard basis $E = (e_1, e_2)$.

(70) Let
$$\mathbf{b}_1 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 1\\ 2.5\\ -5 \end{bmatrix}$.

- (a) Find vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ such that $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{u}_1, \ldots, \mathbf{u}_k)$ is a basis for \mathbb{R}^3 .
- (b) Find vectors $\mathbf{v}_1, \ldots, \mathbf{v}_\ell$ such that $(\mathbf{b}_3, \mathbf{v}_1, \ldots, \mathbf{v}_\ell)$ is a basis for \mathbb{R}^3 .
- Prove that your choices for (a) and (b) form a basis.
- (71) Let

$$A = \begin{bmatrix} -5 & 8 & 0 & -17 & -2 \\ 3 & -5 & 1 & 5 & 1 \\ 11 & -19 & 7 & 1 & 3 \\ 7 & -13 & 5 & -3 & 1 \end{bmatrix}.$$

Find bases and dimensions for Nul A, Col A, and Row A, respectively.

(72) A 177×35 matrix A has 19 pivots. Find dim Nul A, dim Col A, dim Row A, and $\operatorname{rank} A$.