INTEGERS MOD n

PETER MAYR (MATH 2135, CU BOULDER)

1. Divisibility

Definition. Let $n \in \mathbb{N}, a \in \mathbb{Z}$.

- (1) Then n|a (*n* divides *a*) if there exists $q \in \mathbb{Z}$ such that a = qn (that is, *a* is a multiple of *n*).
- (2) a, b are congruent modulo n (written $a \equiv b \mod n$ or $a \equiv_n b$) if n|a-b.

Lemma 1. Let $a, b, c, d \in \mathbb{Z}$, $n \in \mathbb{N}$ with $a \equiv b \mod n$ and $c \equiv d \mod n$. Then

- (1) $a + c \equiv b + d \mod n$,
- (2) $-a \equiv -b \mod n$,
- (3) $a \cdot c \equiv b \cdot d \mod n$.

Proof. Exercise.

2. Integers modulo n

One particular important equivalence relation is \equiv_n on \mathbb{Z} for $n \in \mathbb{N}$. The class of $a \in \mathbb{Z}$ is the set of all integers that are congruent to a modulo n, that is,

$$[a] = \{a + zn : z \in \mathbb{Z}\}.$$

Note [n] = [0] and [-1] = [n-1]. Moreover each integer *a* is in exactly one class modulo *n*, that is, the classes form a **partition** of \mathbb{Z} .

The set of classes

$$\mathbb{Z}_n := \{[0], [1], [2], \dots, [n-1]\}$$

is called the **integers modulo** n.

Define $+, -, \cdot$ on \mathbb{Z}_n by

$$[a] + [b] := [a + b]$$
$$-[a] := [-a]$$
$$[a] \cdot [b] := [a \cdot b]$$

Date: September 9, 2019.

These operations are well-defined (independent of the choice of representatives for each class) by Lemma 1 and satisfy the same laws as $+, -, \cdot$ on \mathbb{Z} : associativity, commutativity, distributivity, etc.

3. Computing in \mathbb{Z}_n

By the above definitions one can add, multiply and subtract in \mathbb{Z}_n just like in \mathbb{Z} . However results should be reduced modulo n and written in the form $[0], [1], \ldots, [n-1]$.

Example. In \mathbb{Z}_5 : [3] + [4] = [7] = [2] -[3] = [-3] = [2] $[3] \cdot [3] = [9] = [4]$

Dividing in \mathbb{Z}_n means solving an equation $[a] \cdot [x] = [b]$ for [x]. For small numbers the solution can often be guessed.

Example. (1) In \mathbb{Z}_3 solve $[2] \cdot [x] = [1]$.

The solution could be [x] = [0], [1] or [2]. Note

 $\begin{array}{l} [2] \cdot [0] = [0], \\ [2] \cdot [1] = [2], \\ [2] \cdot [2] = [1] \\ \text{Hence } [x] = [2]. \end{array}$

(2) In \mathbb{Z}_4 solve $[2] \cdot [x] = [1]$. Trying all 4 options we see $[2] \cdot [0] = [2] \cdot [2] = [0]$ $[2] \cdot [1] = [2] \cdot [3] = [2]$ Hence $[2] \cdot [x] = [1]$ has no solution in \mathbb{Z}_4 .

In any case if a solution exists, it can be found by the Extended Euclidean Algorithm and Bezout coefficients:

Example. Solve $[8] \cdot [x] = [1]$ in \mathbb{Z}_{37} .

This amounts to solving 8x + 37y = 1 for $x, y \in \mathbb{Z}$. The Euclidean algorithm yields x = 14. Hence $[8] \cdot [14] = [1]$ and [x] = [14] solves the original equation.

Using the Extended Euclidean Algorithm one can show that in general:

Theorem 2. $(\mathbb{Z}_n, +, \cdot)$ is a field iff n is prime.