INTEGERS MOD n

PETER MAYR (MATH 2135, CU BOULDER)

1. Divisibility

Definition. Let $n \in \mathbb{N}, a \in \mathbb{Z}$.
(1) Then $n \mid a(n$ divides $a)$ if there exists $q \in \mathbb{Z}$ such that $a=q n$ (that is, a is a multiple of n).
(2) a, b are congruent modulo $n\left(\right.$ written $a \equiv b \bmod n$ or $\left.a \equiv_{n} b\right)$ if $n \mid a-b$.

Lemma 1. Let $a, b, c, d \in \mathbb{Z}, n \in \mathbb{N}$ with $a \equiv b \bmod n$ and $c \equiv d$ $\bmod n$. Then
(1) $a+c \equiv b+d \bmod n$,
(2) $-a \equiv-b \bmod n$,
(3) $a \cdot c \equiv b \cdot d \bmod n$.

Proof. Exercise.

2. Integers modulo n

One particular important equivalence relation is \equiv_{n} on \mathbb{Z} for $n \in \mathbb{N}$. The class of $a \in \mathbb{Z}$ is the set of all integers that are congruent to a modulo n, that is,

$$
[a]=\{a+z n: z \in \mathbb{Z}\} .
$$

Note $[n]=[0]$ and $[-1]=[n-1]$. Moreover each integer a is in exactly one class modulo n, that is, the classes form a partition of \mathbb{Z}.

The set of classes

$$
\mathbb{Z}_{n}:=\{[0],[1],[2], \ldots,[n-1]\}
$$

is called the integers modulo n.
Define,+- , on \mathbb{Z}_{n} by

$$
\begin{aligned}
{[a]+[b] } & :=[a+b] \\
-[a] & :=[-a] \\
{[a] \cdot[b] } & :=[a \cdot b]
\end{aligned}
$$

Date: September 9, 2019.

These operations are well-defined (independent of the choice of representatives for each class) by Lemma 1 and satisfy the same laws as ,,$+- \cdot$ on \mathbb{Z} : associativity, commutativity, distributivity, etc.

3. Computing in \mathbb{Z}_{n}

By the above definitions one can add, multiply and subtract in \mathbb{Z}_{n} just like in \mathbb{Z}. However results should be reduced modulo n and written in the form [0], [1], $\ldots,[n-1]$.

Example. In \mathbb{Z}_{5} :
$[3]+[4]=[7]=[2]$
$-[3]=[-3]=[2]$
$[3] \cdot[3]=[9]=[4]$
Dividing in \mathbb{Z}_{n} means solving an equation $[a] \cdot[x]=[b]$ for $[x]$. For small numbers the solution can often be guessed.
Example. (1) In \mathbb{Z}_{3} solve $[2] \cdot[x]=[1]$.
The solution could be $[x]=[0]$, [1] or [2]. Note
$[2] \cdot[0]=[0]$,
$[2] \cdot[1]=[2]$,
$[2] \cdot[2]=[1]$
Hence $[x]=[2]$.
(2) In \mathbb{Z}_{4} solve $[2] \cdot[x]=[1]$. Trying all 4 options we see $[2] \cdot[0]=[2] \cdot[2]=[0]$
$[2] \cdot[1]=[2] \cdot[3]=[2]$
Hence $[2] \cdot[x]=[1]$ has no solution in \mathbb{Z}_{4}.
In any case if a solution exists, it can be found by the Extended Euclidean Algorithm and Bezout coefficients:
Example. Solve $[8] \cdot[x]=[1]$ in \mathbb{Z}_{37}.
This amounts to solving $8 x+37 y=1$ for $x, y \in \mathbb{Z}$. The Euclidean algorithm yields $x=14$. Hence [8] $\cdot[14]=[1]$ and $[x]=[14]$ solves the original equation.

Using the Extended Euclidean Algorithm one can show that in general:

Theorem 2. $\left(\mathbb{Z}_{n},+, \cdot\right)$ is a field iff n is prime.

