Math 2135 Spring 2019 - Review for Midterm 2

Numbers refer to sections in Treil, Linear algebra done wrong.

1. Basis of vector spaces.
(1) dimension (2.5), Basis Theorem (cf. 2.3.1)
(2) reduce a spanning set to a basis (1.2.1), extend a linear independent set to a basis (2.5.1)
(3) bases and dimension for column space, row space, null space of a matrix (2.7.1-2.7.3)
(4) coordinates with respect to a basis B (1.2)
(5) change of coordinate matrix $[i d]_{B, C}$ for bases B and C (2.8.3)

2. Matrices.

(1) matrix product and composition of linear maps (1.5)
(2) inverse matrices and their properties, Invertible Matrix Theorem (1.6)
(3) inverse matrix via row reduction (2.4)
(4) formula for inverse of 2×2-matrix

3. Linear maps.

(1) a linear map is determined by its images on a basis (1.3.3)
(2) matrix $[f]_{B, C}$ of a linear map f with respect to bases B, C, standard matrix $[f]_{E, E}$ (for standard basis E) (2.8.2)
(3) matrix for rotation, reflection in \mathbb{R}^{2} and \mathbb{R}^{3} (cf. 1.5.2)
(4) injective, surjective, bijective linear maps and connections with kernel, range (cf. 1.7)
(5) isomorphism between vector spaces, n-dimensional vector space is isomorphic to F^{n} (1.6.3)

