Math 2135 - Assignment 6

Due March 1, 2019

(1) Let v_1, \ldots, v_n in a vector space V. Prove: If $v_n \in \text{Span}(v_1, \ldots, v_{n-1})$, then

 $\operatorname{Span}(v_1,\ldots,v_n)=\operatorname{Span}(v_1,\ldots,v_{n-1}).$

- (2) (a) An 8×5 -matrix A has 4 pivot columns. Find dim Nul A, dim Col A.
 - (b) If B is a 3×4 -matrix, what is the largest possible dimension of Col B? What is the smallest possible dimension of Nul B?
 - (c) If the nullspace of a 4×6 -matrix C has dimension 3, what is dim Col C?
- (3) Let V be a vector space that is spanned by a finite set of vectors v_1, \ldots, v_n . Show that V is finite dimensional.

Hint: How can you obtain a finite basis for V?

- (4) Prove the following or give a counter example:
 - (a) A basis B for a vector space V is a linear independent list of vectors in V that is as large as possible.
 - (b) If $k > \dim V$, then any set of k vectors in V are linearly dependent.
- (5) The **row space** Row A of a matrix A is the span of the rows of A.

Two $m \times n$ -matrices A, B are row equivalent if one can be transferred to the other by elementary row operations.

Show that if matrices A and B are row equivalent, then $\operatorname{Row} A = \operatorname{Row} B$.

Hint: Check for each type of elementary row operation, that it does not change the row space.

- (6) Show that if B is a matrix in row echelon form, then its non-zero rows are a basis for Row B.
- (7) Problem (5) and (6) together prove the following:

Theorem. Let A, B be row equivalent matrices and B in row echelon form. Then the non-zero rows of B form a basis for Row A.

(a) Use this to find a basis for the row space of

$$A = \left[\begin{array}{rrr} 0 & 2 & -3 \\ 1 & 0 & 1 \\ 2 & 2 & -1 \end{array} \right].$$

- (b) What can you say about the relation between $\dim \operatorname{Col} A$ and $\dim \operatorname{Row} A$ for arbitrary matrices A?
- (8) Let $B = (b_1, \ldots, b_n)$ be a basis for a vector space V over a field F and consider the coordinate mapping $V \to F^n$, $x \mapsto [x]_B$.

(a) Show that $[c \cdot x]_B = c[x]_B$ for all $x \in V, c \in F$.

(b) Show that the coordinate mapping is onto F^n .