Math 2135 - Assignment 2

Due February 8, 2019

(1,2) Let V be a vector space over the field F with zero vector $\mathbf{0}$, let $\mathbf{v} \in V$ and $c \in F$. Prove that

$$c\mathbf{v} = \mathbf{0}$$
 iff $c = 0$ or $\mathbf{v} = \mathbf{0}$.

Show the implication \Leftarrow as exercise (1) and \Rightarrow as exercise (2). State the axioms that you are using.

Hint for (2): Suppose $c\mathbf{v} = \mathbf{0}$ and $c \neq 0$. How can you deduce that $\mathbf{v} = \mathbf{0}$?

(3) Is **b** a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2$?

$$\mathbf{a}_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} -2\\-3\\3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1\\-2\\3 \end{bmatrix}$$

(4) For which values of a is **b** in the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 ?

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2\\1\\7 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} a\\-3\\-5 \end{bmatrix}$$

- (5) (a) Find vectors $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^3$ that span the plane in \mathbb{R}^3 with equation x 2y + 3z = 0. How many do you need?
 - Hint: Write down a parametrized solution for the equation.
 - (b) Continuing problem 1 of assignment 2: Find vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^4$ such that $\operatorname{Nul} A = \operatorname{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ for

$$A = \begin{bmatrix} 0 & 0 & 2 & 4 \\ 2 & -4 & 1 & 0 \\ -3 & 6 & 2 & 7 \end{bmatrix}$$

- (6) Are the following true or false? Explain your answers.
 - (a) For every $A \in \mathbb{R}^{2 \times 3}$ with 2 pivots, Ax = 0 has a nontrivial solution.
 - (b) For every $A \in \mathbb{R}^{2 \times 3}$ with 2 pivots and every $\mathbf{b} \in \mathbb{R}^2$, $Ax = \mathbf{b}$ is consistent.
 - (c) The vector $3\mathbf{v}_1$ is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$.
 - (d) For $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^3$, $\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$ is always a plane through the origin.
- (7) Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be vectors in a vector space V over some field F. Complete the proof from class that $U := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ is a subspace of V.
- (8) Let $A \in F^{m \times n}$ for a field F. Prove that the nullspace of A, Nul A, is a subspace of F^n .