Math 2135 - Assignment 2

Due February 1, 2019

(1) (a) Which of the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are in the nullspace of A, Null A?

$$\mathbf{u} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -2\\0\\4\\-2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1\\1\\-2\\1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 2 & 4\\2 & -4 & 1 & 0\\-3 & 6 & 2 & 7 \end{bmatrix}$$

(b) Solve $A\mathbf{x} = \mathbf{0}$ and give the solution in parametric vector form. (2) Show the following:

Theorem. Suppose $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{p} . Then the set of all solutions of $A\mathbf{x} = \mathbf{b}$ is

$$\mathbf{p} + \operatorname{Null} A = \{ \mathbf{p} + \mathbf{v} \mid \mathbf{v} \in \operatorname{Null} A \}.$$

Hint: For the proof suppose $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{p} and use 2 steps:

- (a) Show that if \mathbf{v} is in Null A, then $\mathbf{p} + \mathbf{v}$ is also a solution for $A\mathbf{x} = \mathbf{b}$.
- (b) Show that if \mathbf{q} is a solution for $A\mathbf{x} = \mathbf{b}$, then $\mathbf{q} \mathbf{p}$ is in Null A.
- (3) Explain why the following are not fields under the usual addition and multiplication:

(b) $\{x \in \mathbb{R} \mid x \ge 0\}$

- (c) \mathbb{R}^2 with componentwise addition and multiplication, $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} := \begin{bmatrix} x_1y_1 \\ x_2y_2 \end{bmatrix}$
- (4) Let (F, +, ·) be a field. Using only the axioms of a field, show that for each a ∈ F, a ≠ 0, there exists a unique element b ∈ F such that ab = 1. This b is then called the multiplicative inverse of a and denoted by b =: a⁻¹. Hint: Suppose ab₁ = 1 and ab₂ = 1. Show b₁ = b₂.
- (5) For n > 1, recall that $\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$ is the set of residue classes modulo n. For $a, b \in \mathbb{Z}$, we have [a] + [b] := [a+b] and $[a] \cdot [b] := [ab]$.
 - (a) Give the operation tables for $+, \cdot$ on \mathbb{Z}_3 .
 - (b) What are the additive and multiplicative identity elements (if they exist)? Give additive inverses -[a] and multiplicative inverses $[a]^{-1}$ (if they exist).
 - (c) Is \mathbb{Z}_3 a field?

(a) \mathbb{Z}

- (6) Like the previous problem for \mathbb{Z}_4 .
- (7) Use row reduction to solve the following linear system over \mathbb{Z}_2 (for brevity we write 0, 1 for the classes [0], [1], respectively):

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \cdot x = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

(8) Let F be a field. Show that $F^{2\times 2}$ forms a vector space with + the componentwise sum of matrices and \cdot the componentwise multiplication of a matrix by a scalar. In particular, determine what is the zero vector and what is the additive inverse of a matrix in $F^{2\times 2}$.