Math 2135 - Assignment 9

Due November 1, 2019

(1) Let V, W be vector spaces over F, let $B = (b_1, \ldots, b_n)$ be a basis of V, and let $f: V \to W$ be linear.

Show that

$$f(V) = \operatorname{Span}(f(b_1), \dots, f(b_n)).$$

(2) Let

$$f: \mathbb{R}^3 \to \mathbb{R}^3, x \mapsto \begin{bmatrix} 1 & -2 & 3 \\ 2 & -1 & 3 \\ 0 & 1 & -1 \end{bmatrix} \cdot x$$

(a) Determine a basis for the range and for the kernel of f. What are their dimensions?

Hint: Use Problem 1.

- (b) Is f surjective, injective, bijective?
- (3) Let P_3 be the vector space of polynomials of degree ≤ 3 over \mathbb{R} , and let $d: P_3 \rightarrow P_3, p \rightarrow p'$ be the derivation map.
 - (a) Determine the range and the kernel of d.
 - (b) Is *d* surjective, injective, bijective?
- (4) Let $e: P_3 \to \mathbb{R}, p \to p(1)$, be the function that evaluates a polynomial p at x = 1.
 - (a) Determine the range and the kernel of e.
 - (b) Is *e* surjective, injective, bijective?
- (5) Let $A, B \in F^{n \times n}$ such that AB is invertible. Show that A and B are invertible. Hint: Use the Invertible Matrix Theorem. How can you get a left inverse for B from the inverse C of AB? How to get a right inverse of A?
- (6) Show the **Rank Theorem**: For $A \in F^{m \times n}$,

$$\dim \operatorname{Col} A = \dim \operatorname{Row} A$$

dim $\operatorname{Col} A$ is also called the **rank** of A, denoted rank A.

Hint: Use the Theorem in Problem 7 of Assignment 6 to obtain a basis of the row space $\operatorname{Row} A$.

- (7) Show that $A \in F^{n \times n}$ is invertible iff rank A = n.
- (8) Let V, W be vector spaces over F with zero vectors $0_V, 0_W$, respectively. Let $f: V \to W$ linear. Show
 - (a) $f(0_V) = 0_W$,
 - (b) that ker f is a subspace of V.