Math 2135 - Assignment 5

Due October 4, 2019

Problems 1-5 are review material for the first midterm on October 2. So you should solve them before Wednesday!

- (1) Explain whether the following are true or false (give counter examples if possible):
 - (a) Every vector space is a subspace of itself.
 - (b) Each plane in \mathbb{R}^3 is a subspace.
 - (c) Let U be a subspace of a vector space V. Any linear combination of vectors of U is also in U.
 - (d) Let v_1, \ldots, v_n be in a vector space V. Then $\text{Span}(v_1, \ldots, v_n)$ is the smallest subspace of V containing v_1, \ldots, v_n .
- (2) Explain whether the following are true or false (give counter examples if possible):
 - (a) Vectors v_1, v_2, v_3 are linearly dependent if v_2 is a linear combination of v_1, v_3 .
 - (b) A subset $\{v\}$ of a vector space is linearly dependent iff v = 0.
 - (c) Two vectors in \mathbb{R}^3 cannot span all of \mathbb{R}^3 .
 - (d) There exist four vectors in \mathbb{R}^3 that are linearly independent.
- (3) Consider the vector space of functions $V = \text{Span}(\cos x, 2\cos x, \cos 2x, 3\cos 2x)$ over \mathbb{R} . Give a basis for V.
- (4) Let v_1, \ldots, v_n be linearly independent in a vector space V. Show that no vector in $\text{Span}(v_1, \ldots, v_n)$ can be expressed by two different linear combinations.

Hint: Use contraposition. Assume some vector u can be written as linear combination with distinct lists of coefficients a_1, \ldots, a_n and b_1, \ldots, b_n . Show that v_1, \ldots, v_n is linearly dependent.

- (5) Prove the following or give a counter example:
 - (a) In general, the column space and the row space of a matrix A are not the same.
 - (b) If a matrix B is a row echelon form of A, then the pivot columns of B are a basis for Col A.

(6) (a) Find vectors u₁,..., u_k such that (¹₂ -1], ¹₁ , u₁,..., u_k) is a basis of R³.
(b) Find vectors v₁,..., v_k such that (²₁ , v₁,..., v_k) is a basis of R³.

Check that your choices form bases. $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix}$

(7) Let
$$B = \begin{pmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$
) be a basis of \mathbb{R}^2 .
(a) Find vectors $u, v \in \mathbb{R}^2$ with $[u]_B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, [v]_B = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.
(b) Compute the coordinates relative to B of $w = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$.

(8) Let $B = (1, x, x^2)$ and $C = (1, 1 + x, 1 + x + x^2)$ be bases of P_2 (polynomial functions of degree ≤ 2).

(a) Determine the polynomials p, q with $[p]_B = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$ and $[q]_C = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$. (b) Compute $[r]_B$ and $[r]_C$ for $r = 3 + 2x + x^2$.