Math 2135 - Assignment 13

Due December 10, 2018

(1) Eigenvalues, -vectors and -spaces can be be defined for linear maps just as for matrices. Let $h: V \to W$ be a linear map for vector spaces V, W over F. Show that the eigenspace for $\lambda \in F$,

$$E_{h,\lambda} := \{ x \in V : h(x) = \lambda x \},\$$

is a subspace of V.

(2) Give all eigenvalues and bases for eigenspaces. Do you need the characteristic polynomials?

(a)
$$A = \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 3 \end{bmatrix}$

(3) Give characteristic polynomial, eigenvalues and bases for eigenspaces for $C = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$.

- (4) Compute eigenvalues and eigenvectors for $D = \begin{bmatrix} -1 & 4 & 1 \\ 6 & 9 & 2 \\ 0 & 0 & -3 \end{bmatrix}$.
- (5) Are the matrices A, B, C, D in (2), (3), (4) diagonalizable? How?
- (6) Consider a population of owls feeding on a population of squirrels. In month k, let o_k denote the number of owls and s_k the number of squirrels. Assume that the populations change every month as follows:

$$o_{k+1} = 0.3o_k + 0.4s_k$$

 $s_{k+1} = -0.4o_k + 1.3s_k$

That is, if there would be no squirrels to hunt, only 30% of the owls would survive to the next month; if there were no owls that hunted squirrels, then the squirrel population would grow by factor 1.3 every month.

Let $x_k = \begin{bmatrix} o_k \\ s_k \end{bmatrix}$. Express the population change from x_k to x_{k+1} using a matrix A. Diagonalize A.

- (7) Continue the previous problem: Let the starting population be $x_1 = \begin{bmatrix} o_1 \\ s_1 \end{bmatrix} = \begin{bmatrix} 20 \\ 100 \end{bmatrix}$.
 - (a) Give an explicit formula for the populations in month k + 1.
 - (b) Are the populations growing or decreasing over time? By which factor?
 - (c) What is ratio of owls to squirrels after 12 months? After 24 months? Can you explain why?
 - (8) Let $A \in F^{n \times n}$. Are the following true or false? Why?
 - (a) If A has n distinct eigenvectors, then A is diagonalizable.
 - (b) If a 4×4 -matrix A has two eigenvalues with eigenspaces of dimension 3 and 1, respectively, then A is diagonalizable.
 - (c) If A is invertible, then A is diagonalizable.
 - (d) A is diagonalizable iff A has n eigenvalues (counting multiplicities).
 - (e) If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.