Math 2135 - Assignment 12

Due March 18, 2016

(1) Compute the determinant of the matrices by cofactor expansion. Pick a row or column that yields the least amount of computation:

$$A = \begin{bmatrix} 0 & 1 & -3\\ 5 & 4 & -4\\ 0 & -3 & -4 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & -3 & 0\\ 3 & 1 & 5 & 1\\ 2 & 0 & 0 & 0\\ 7 & 1 & -2 & 5 \end{bmatrix}.$$

(2) Rule of Sarrus for the determinant of 3×3 -matrices. Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Prove that

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Hint: Expand det A across the first row

- (3) Give two 3×3 -matrices with determinant 6. (Hint: triangular matrices.)
- (4) Consider $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (a) How does switching the rows effect the determinant? Compare det A and det $\begin{vmatrix} c & d \\ a & b \end{vmatrix}$.
 - (b) How does adding a multiple of one row to the other row effect the determinant? Compare det A and det $\begin{bmatrix} a & b \\ c+ra & d+rb \end{bmatrix}$.
- (5) Compute the determinants by row reduction to echelon form:

A =	$\begin{bmatrix} 3\\ 3\\ 2 \end{bmatrix}$	$3 \\ 4 \\ -3$	$\begin{bmatrix} -3\\ -4\\ -5 \end{bmatrix}$	B =	$\begin{bmatrix} 1\\0\\2\\-3 \end{bmatrix}$	$ \begin{array}{c} 3 \\ 1 \\ 7 \\ -10 \end{array} $	$2 \\ 2 \\ 6 \\ -7$	$ -4 \\ -5 \\ -3 \\ 2 $	
					LU	10	1	<u> </u>	

(6) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in $\mathbb{R}^{2 \times 2}$. Show that $|\det A|$ is the area of the parallelogram whose

sides are the rows of A, i.e., vectors (a, b) and (c, d).

Hint: Make a sketch. The area of the parallelogram is the length of its base (a, b) times its height. Compute the height by the projection of (c, d) onto a vector orthogonal to the base.

- (7) The **cross product** of vectors $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$ in \mathbb{R}^3 is defined as $a \times b := (a_2b_3 a_3b_2, a_3b_1 a_1b_3, a_1b_2 a_2b_1).$
 - (a) Check that $a \times b$ can be expressed as cofactor expansion across the first row for the determinant for the "3 × 3-matrix"

$$A = \begin{bmatrix} e_1 & e_2 & e_3\\ a_1 & a_2 & a_3\\ b_1 & b_2 & b_3 \end{bmatrix}$$

where e_1, e_2, e_3 are the unit vectors of \mathbb{R}^3 .

- (b) Show that $a \times b$ is orthogonal to a and to b.
- (c) Bonus for no credit: Show that $|a \times b|$ is the area of the parallelogram with sides a and b.
- (8) * Prove the first part of Theorem 3.11: det A for any $n \times n$ -matrix can be computed by a cofactor expansion across the *i*-th row of A, that is,

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}.$$

Recall that A_{ij} is the $(n-1) \times (n-1)$ -matrix obtained from A by removing row i and column j. Hint: Use induction on i. For the induction step from i to i+1, flip rows i and i+1 (How does this change the determinant?) and use the induction assumption.