Math 2135 - Assignment 10

Due November 9, 2018

- (1) Let $V := \mathbb{R}^+$ be the set of positive real numbers.
 - (a) Is this a vector space over the field \mathbb{R} under the usual operations + and scalar multiples?
 - (b) Show that V is a vector space over \mathbb{R} with operations

$$u \oplus v := u \cdot v$$
 for addition,

 $c \odot v := v^c$ for scalar multiples,

with $u, v \in V, c \in \mathbb{R}$. Check all properties!

- (2) Prove or give a counter example:
 - (a) The union $U_1 \cup U_2$ of two subspaces U_1, U_2 of a vector space V is again a subspace of V.
 - (b) For every subspace U of an n-dimensional vector space V there exists $0 \le k \le n$ and vectors $u_1, \ldots, u_k \in V$ such that $U = \text{Span}(u_1, \ldots, u_k)$.
- (3) Extend the following list of vectors to a basis of the corresponding vector space if possible:

(a)
$$\left(\begin{bmatrix} 1\\ -3\\ -2 \end{bmatrix}, \begin{bmatrix} -2\\ 6\\ 4 \end{bmatrix} \right)$$
 in \mathbb{R}^3

- (b) $(2+x, 3+2x+x^2)$ in P_2 .
- (4) Let $A \in F^{m \times n}$. Assume that $f \colon F^n \to F^m$, $x \mapsto A \cdot x$, is bijective. Show that A is invertible. What is f^{-1} ?

Hint: Use the Invertible Matrix Theorem.

- (5) (a) Let $U = \mathbb{R}^{\mathbb{R}}$ be the set of all functions from \mathbb{R} to \mathbb{R} . Show that $e: U \to \mathbb{R}, f \mapsto f(5)$, is linear.
 - (b) Let V be the set of real-valued functions that can be integrated over the interval [0, 1]. Show that

$$i: V \to \mathbb{R}, \ f \mapsto \int_0^1 f(x) \, dx,$$

is linear.

(6) Show that the following maps are not linear by giving concrete vectors for which the defining properties of linear maps are not satisfied.

(a)
$$g: \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} xy \\ y \end{bmatrix}$$

(b) $h: \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} |x| + |y| \\ 2x \end{bmatrix}$

(7) Give the standard matrices for the following linear transformations:

(a)
$$f : \mathbb{R}^2 \to \mathbb{R}^3, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 2x+y \\ x \\ -x+y \end{bmatrix};$$

- (b) the function g on \mathbb{R}^2 that scales all vectors to half their length;
- (c) the projection h of vectors in \mathbb{R}^2 onto the vector $\begin{bmatrix} 0\\1 \end{bmatrix}$.

(8) Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear map such that

$$f(\begin{bmatrix}1\\2\end{bmatrix}) = \begin{bmatrix}2\\0\\-3\end{bmatrix}, f(\begin{bmatrix}3\\2\end{bmatrix}) = \begin{bmatrix}-2\\2\\1\end{bmatrix}$$
(a) Use the linearity of f to find $f(\begin{bmatrix}1\\0\end{bmatrix})$ and $f(\begin{bmatrix}0\\1\end{bmatrix})$.

(b) Determine the standard matrix of f and $f(\begin{bmatrix} x \\ y \end{bmatrix})$ for arbitrary $x, y \in \mathbb{R}$.